Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut Pathog ; 16(1): 34, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972996

RESUMO

It has recently been proposed that the study of microbial dynamics in humans may gain insights from island biogeographical theory. Here, we test whether the diversity of the intratumoral microbiota of colorectal cancer tumors (CRC) follows a power law with tumor size akin to the island species-area relationship. We confirm a direct correlation between the quantity of Amplicon Sequence Variants (ASVs) within CRC tumors and tumor sizes, following a (log)power model, explaining 47% of the variation. Understanding the processes involved, potentially through the analogy of tumors and islands, may ultimately contribute to future clinical and therapeutic strategies.

2.
J Transl Med ; 22(1): 652, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997719

RESUMO

BACKGROUND: The incidence of early-stage lung adenocarcinoma (ES-LUAD) is steadily increasing among non-smokers. Previous research has identified dysbiosis in the gut microbiota of patients with lung cancer. However, the local microbial profile of non-smokers with ES-LUAD remains largely unknown. In this study, we systematically characterized the local microbial community and its associated features to enable early intervention. METHODS: A prospective collection of ES-LUAD samples (46 cases) and their corresponding normal tissues adjacent to the tumor (41 cases), along with normal lung tissue samples adjacent to pulmonary bullae in patients with spontaneous pneumothorax (42 cases), were subjected to ultra-deep metagenomic sequencing, host transcriptomic sequencing, and proteomic sequencing. The obtained omics data were subjected to both individual and integrated analysis using Spearman correlation coefficients. RESULTS: We concurrently detected the presence of bacteria, fungi, and viruses in the lung tissues. The microbial profile of ES-LUAD exhibited similarities to NAT but demonstrated significant differences from the healthy controls (HCs), characterized by an overall reduction in species diversity. Patients with ES-LUAD exhibited local microbial dysbiosis, suggesting the potential pathogenicity of certain microbial species. Through multi-omics correlations, intricate local crosstalk between the host and local microbial communities was observed. Additionally, we identified a significant positive correlation (rho > 0.6) between Methyloversatilis discipulorum and GOLM1 at both the transcriptional and protein levels using multi-omics data. This correlated axis may be associated with prognosis. Finally, a diagnostic model composed of six bacterial markers successfully achieved precise differentiation between patients with ES-LUAD and HCs. CONCLUSIONS: Our study depicts the microbial spectrum in patients with ES-LUAD and provides evidence of alterations in lung microbiota and their interplay with the host, enhancing comprehension of the pathogenic mechanisms that underlie ES-LUAD. The specific model incorporating lung microbiota can serve as a potential diagnostic tool for distinguishing between ES-LUAD and HCs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Metagenômica , Microbiota , Proteômica , Transcriptoma , Humanos , Adenocarcinoma de Pulmão/microbiologia , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Metagenômica/métodos , Masculino , Feminino , Transcriptoma/genética , Microbiota/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Disbiose/microbiologia , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Idoso
3.
APMIS ; 132(6): 416-429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403979

RESUMO

Histology slide, tissue microbes, and the host gene expression can be independent prognostic factors of colorectal cancer (CRC), but the underlying associations and biological significance of these multimodal omics remain unknown. Here, we comprehensively profiled the matched pathological images, intratumoral microbes, and host gene expression characteristics in 527 patients with CRC. By clustering these patients based on histology slide features, we classified the patients into two histology slide subtypes (HSS). Onco-microbial community and tumor immune microenvironment (TIME) were also significantly different between the two subtypes (HSS1 and HSS2) of patients. Furthermore, variation in intratumoral microbes-host interaction was associated with the prognostic heterogeneity between HSS1 and HSS2. This study proposes a new CRC classification based on pathological image features and elucidates the process by which tumor microbes-host interactions are reflected in pathological images through the TIME.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso
4.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189014, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918451

RESUMO

Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Carcinogênese , Imunoterapia , Transdução de Sinais
5.
World J Gastroenterol ; 29(25): 3984-3998, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37476590

RESUMO

The gut microbiome plays an important role in the variation of pharmacologic response. This aspect is especially important in the era of precision medicine, where understanding how and to what extent the gut microbiome interacts with drugs and their actions will be key to individualizing therapy. The impact of the composition of the gut microbiome on the efficacy of newer cancer therapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell treatment has become an active area of research. Pancreatic adenocarcinoma (PAC) has a poor prognosis even in those with potentially resectable disease, and treatment options are very limited. Newer studies have concluded that there is a synergistic effect for immunotherapy in combination with cytotoxic drugs, in the treatment of PAC. A variety of commensal microbiota can affect the efficacy of conventional chemotherapy and immunotherapy by modulating the tumor microenvironment in the treatment of PAC. This review will provide newer insights on the impact that alterations made in the gut microbial system have in the development and treatment of PAC.


Assuntos
Adenocarcinoma , Microbioma Gastrointestinal , Microbiota , Neoplasias , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Adenocarcinoma/terapia , Imunoterapia , Neoplasias/terapia , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Front Cell Infect Microbiol ; 13: 1165790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180444

RESUMO

Background: Different intratumoral microbiotaexist in different tumors and play a crucial function in carcinogenesis. However, whether they impact clinical outcomes in esophageal squamous cell carcinoma (ESCC) and their mechanism remain unclear. Methods: 16S rDNA amplicon sequencing was performed on surgically resected samples from 98 ESCC patients to analyze intratumoral microbiome abundance and composition. Multiplex fluorescent immunohistochemistry staining was used to profile the phenotypes of immune infiltrates in the tumor microenvironment (TME). Results: Patients with higher intratumoral Shannon index had significantly worse surgical outcomes. When patients were divided into short-term survivors and long-term survivors based on the median survival time, both intratumoral alpha-diversity and beta-diversity were found to be significantly inconsistent, and the relative abundance of Lactobacillus and Leptotrichia emerged as the two microorganisms that probably influenced the survival of ESCC patients. Only Lactobacillus in ESCC was validated to significantly worsen patients' prognoses and to be positively correlated with the Shannon index. Multivariate analysis revealed that the intratumoral Shannon index, the relative abundance of Lactobacillus, and the pathologic tumor-node-metastasis (pTNM) stage were independently associated with patients' overall survival. Furthermore, the relative abundance of both Lactobacillus and Shannon index was positively correlated with the proportions of PD-L1+ epithelial cells (ECs) and tumor-associated macrophages (TAMs). The Shannon index was negatively correlated with the proportions of natural killer (NK) cells in the TME. Conclusions: A high abundance of intratumoral Lactobacillus and bacterial alpha-diversity was associated with the formation of the immunosuppressive TME and predicted poor long-term survival in ESCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Microambiente Tumoral , Células Matadoras Naturais
7.
Front Immunol ; 14: 1140995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999009

RESUMO

Introduction: Nowadays, it has been recognized that gut microbiome can indirectly modulate cancer susceptibility or progression. However, whether intratumor microbes are parasitic, symbiotic, or merely bystanders in breast cancer is not fully understood. Microbial metabolite plays a pivotal role in the interaction of host and microbe via regulating mitochondrial and other metabolic pathways. And the relationship between tumor-resident microbiota and cancer metabolism remains an open question. Methods: 1085 breast cancer patients with normalized intratumor microbial abundance data and 32 single-cell RNA sequencing samples were retrieved from public datasets. We used the gene set variation analysis to evaluate the various metabolic activities of breast cancer samples. Furthermore, we applied Scissor method to identify microbe-associated cell subpopulations from single-cell data. Then, we conducted comprehensive bioinformatic analyses to explore the association between host and microbe in breast cancer. Results: Here, we found that the metabolic status of breast cancer cells was highly plastic, and some microbial genera were significantly correlated with cancer metabolic activity. We identified two distinct clusters based on microbial abundance and tumor metabolism data. And dysregulation of the metabolic pathway was observed among different cell types. Metabolism-related microbial scores were calculated to predict overall survival in patients with breast cancer. Furthermore, the microbial abundance of the specific genus was associated with gene mutation due to possible microbe-mediated mutagenesis. The infiltrating immune cell compositions, including regulatory T cells and activated NK cells, were significantly associated with the metabolism-related intratumor microbes, as indicated in the Mantel test analysis. Moreover, the mammary metabolism-related microbes were related to T cell exclusion and response to immunotherapy. Conclusions: Overall, the exploratory study shed light on the potential role of the metabolism-related microbiome in breast cancer patients. And the novel treatment will be realized by further investigating the metabolic disturbance in host and intratumor microbial cells.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Microbiota , Humanos , Feminino , Neoplasias da Mama/genética , Microbioma Gastrointestinal/fisiologia , Redes e Vias Metabólicas , Análise de Sequência de RNA
8.
Gut Microbes ; 15(1): 2166700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740846

RESUMO

Although gut microbiota has been linked to cancer, little is known about the crosstalk between gut- and intratumoral-microbiomes. The goal of this study was to determine whether gut Akkermansia muciniphila (Akk) is involved in the regulation of intratumoral microbiome and metabolic contexture, leading to an anticancer effect on lung cancer. We evaluated the effects of gut endogenous or gavaged exogenous Akk on the tumorigenesis using the Lewis lung cancer mouse model. Feces, blood, and tumor tissue samples were collected for 16S rDNA sequencing. We then conducted spatially resolved metabolomics profiling to discover cancer metabolites in situ directly and to characterize the overall Akk-regulated metabolic features, followed by the correlation analysis of intratumoral bacteria with metabolic network. Our results showed that both endogenous and exogenous gavaged Akk significantly inhibited tumorigenesis. Moreover, we detected increased Akk abundance in blood circulation or tumor tissue by 16S rDNA sequencing in the Akk gavaged mice, compared with the control mice. Of great interest, gavaged Akk may migrate into tumor tissue and influence the composition of intratumoral microbiome. Spatially resolved metabolomics analysis revealed that the gut-derived Akk was able to regulate tumor metabolic pathways, from metabolites to enzymes. Finally, our study identified a significant correlation between the gut Akk-regulated intratumoral bacteria and metabolic network. Together, gut-derived Akk may migrate into blood circulation, and subsequently colonize into lung cancer tissue, which contributes to the suppression of tumorigenesis by influencing tumoral symbiotic microbiome and reprogramming tumoral metabolism, although more studies are needed.


Assuntos
Microbioma Gastrointestinal , Neoplasias Pulmonares , Microbiota , Animais , Camundongos , Verrucomicrobia/fisiologia , Metabolômica/métodos , Carcinogênese
9.
Trends Microbiol ; 31(7): 707-722, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36841736

RESUMO

The human microbiome is intimately related to cancer biology and plays a vital role in the efficacy of cancer treatments, including immunotherapy. Extraordinary evidence has revealed that several microbes influence tumor development through interaction with the host immune system, that is, immuno-oncology-microbiome (IOM). This review focuses on the intratumoral microbiome in IOM and describes the available data and computational methods for discovering biological insights of microbial profiling from host bulk, single-cell, and spatial sequencing data. Critical challenges in data analysis and integration are discussed. Specifically, the microorganisms associated with cancer and cancer treatment in the context of IOM are collected and integrated from the literature. Lastly, we provide our perspectives for future directions in IOM research.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia/métodos , Biologia Computacional/métodos , Previsões
10.
Front Pharmacol ; 14: 1320028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38357363

RESUMO

Background: Metastatic colorectal cancer (mCRC) is a heterogeneous disease, often associated with poor outcomes and resistance to therapies. The racial variations in the molecular and microbiological profiles of mCRC patients, however, remain under-explored. Methods: Using RNA-SEQ data, we extracted and analyzed actively transcribing microbiota within the tumor milieu, ensuring that the identified bacteria were not merely transient inhabitants but engaged in the tumor ecosystem. Also, we independently acquired samples from 12 mCRC patients, specifically, 6 White individuals and 6 of Black or African American descent. These samples underwent 16S rRNA sequencing. Results: Our study revealed notable racial disparities in the molecular signatures and microbiota profiles of mCRC patients. The intersection of these data showcased the potential modulating effects of specific bacteria on gene expression. Particularly, the bacteria Helicobacter cinaedi and Sphingobium herbicidovorans emerged as significant influencers, with strong correlations to the genes SELENBP1 and SNORA38, respectively. Discussion: These findings underscore the intricate interplay between host genomics and actively transcribing tumor microbiota in mCRC's pathogenesis. The identified correlations between specific bacteria and genes highlight potential avenues for targeted therapies and a more personalized therapeutic approach.

11.
Front Oncol ; 12: 1047015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523986

RESUMO

Emerging studies have revealed the role of microbiota in regulating tumorigenesis, development, and response to antitumor treatment. However, most studies have focused on gut microbiota, and little is known about the intratumoral microbiome. To date, the latest research has indicated that the intratumoral microbiome is a key component of the tumor microenvironment (TME), and can promote a heterogeneous immune microenvironment, reprogram tumor metabolism to affect tumor invasion and metastasis. In this review, we will summarize existing studies on the intratumoral microbiome of gastrointestinal cancers and reveal their crosstalk. This will provide a better understanding of this emerging field and help to explore new therapeutic approaches for cancer patients by targeting the intratumoral microbiome.

12.
Front Immunol ; 13: 1051987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466871

RESUMO

In the past few decades, great progress has been achieved in the understanding of microbiome-cancer interactions. However, most of the studies have focused on the gut microbiome, ignoring how other microbiomes interact with tumors. Emerging evidence suggests that in many types of cancers, such as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral microbiome plays a significant role. In addition, accumulating evidence suggests that intratumoral microbes have multiple effects on the biological behavior of tumors, for example, regulating tumor initiation and progression and altering the tumor response to chemotherapy and immunotherapy. However, to fully understand the role of the intratumoral microbiome in cancer, further investigation of the effects and mechanisms is still needed. This review discusses the role of intratumoral bacteria in tumorigenesis and tumor progression, recurrence and metastasis, as well as their effect on cancer prognosis and treatment outcome, and summarizes the relevant mechanisms.


Assuntos
Microbiota , Neoplasias Pancreáticas , Humanos , Prognóstico , Imunoterapia , Transformação Celular Neoplásica
13.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142841

RESUMO

Canine mammary tumor (CMT) is the most common tumor in dogs, with 50% of malignant cases, and lacks an effective therapeutic schedule, hence its early diagnosis is of great importance to achieve a good prognosis. Microbiota is believed to play important roles in systemic diseases, including cancers. In this study, 91 tumors, 21 oral and fecal samples in total were collected from dogs with CMTs, and 31 oral and 21 fecal samples from healthy dogs were collected as control. The intratumoral, oral and gut bacterial community of dogs with CMTs and healthy dogs was profiled by 16S rRNA high-throughput sequencing and bioinformatic methods. The predominant intratumoral microbes were Ralstonia, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pseudomonas, unidentified_Chloroplast and Bacteroides at the genus level. In addition, our findings demonstrated striking changes in the composition of the oral and gut bacterium community in the dogs suffered from CMTs compared to the healthy dogs, with a significant increase of Bacteroides which also was the significant microbial biomarker in the oral and gut bacterium community. It showed that the Bacteroides was shared in the intratumoral, oral and intestinal bacterial microbiomes, confirming that microbiota might travel from the mouth to the intestine and finally to the distant mammary tumor tissue. This study provides a new microbiological idea for the treatment of canine mammary tumors, and also provides a theoretical basis for the study of human breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Microbiota , Animais , Bactérias/genética , Cães , Disbiose/microbiologia , Disbiose/veterinária , Fezes/microbiologia , Feminino , Humanos , RNA Ribossômico 16S/genética
14.
Front Oncol ; 12: 781741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003766

RESUMO

There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.

15.
Cancer Treat Res ; 178: 253-264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31209849

RESUMO

The human gut microbiota consists of about 3.8 × 1013 microorganisms that play an essential role in health, metabolism, and immunomodulation. These gut microbes alter therapeutic response and toxicity to cancer therapies including cytotoxic chemotherapy, radiation therapy, kinase inhibitors, and immunotherapy agents. The gut microbiota generates short-chain fatty acids that are significant regulators of histone post-translational modifications that fundamentally regulate gene expression, linking the microbiota to cellular metabolism and transcriptional regulation. The short-chain fatty acids not only act locally but can be taken up in the blood stream to inhibit the activity of histone deacetylases, regulate gene expression in distant organs as well as the effector function of CD8+ T cells. Cancer and the treatments for it negatively impact the microbiome often resulting in dysbiosis. This can diminish a patient's response to treatment as well as increase systemic toxicities from these therapies. In addition to the gut microbiota, microbes have been detected in tumors that can modulate chemotherapeutic drug response and can result in immune suppression. The gut microbiota and tumor-associated bacteria may be a significant contributor to the interindividual differences and heterogeneous responses to cancer therapies and drug tolerability and strategies that support and/or manipulate the microbiota to improve therapeutic outcome is an emerging area for personalized cancer treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Disbiose , Ácidos Graxos Voláteis , Humanos , Neoplasias/microbiologia , Neoplasias/terapia , Medicina de Precisão , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA