Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Autism ; 15(1): 28, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877552

RESUMO

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Assuntos
Modelos Animais de Doenças , Potenciação de Longa Duração , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Espasmos Infantis , Animais , Masculino , Ratos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Hipocampo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Sinapses/metabolismo
2.
J Neurophysiol ; 131(5): 876-890, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568510

RESUMO

At the heart of the prefrontal network is the mediodorsal (MD) thalamus. Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wild-type mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We show that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons had a higher rheobase that resulted in less readily generated action potentials compared with MD-M→mPFC neurons. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data demonstrate that the two populations of MD→mPFC neurons have divergent physiologies and support a differential role in thalamocortical information processing and potentially behavior.NEW & NOTEWORTHY To realize the potential of circuit-based therapies for psychiatric disorders that localize to the prefrontal network, we need to understand the properties of the populations of neurons that make up this network. The mediodorsal (MD) thalamus has garnered attention for its roles in executive functioning and social/emotional behaviors mediated, at least in part, by its projections to the medial prefrontal cortex (mPFC). Here, we identify and compare the physiology of the projection neurons in the two MD subnuclei that provide ascending inputs to mPFC in mice. Differences in intrinsic excitability between the two populations of neurons suggest that neuromodulation strategies targeting the prefrontal thalamocortical network will have differential effects on these two streams of thalamic input to mPFC.


Assuntos
Núcleo Mediodorsal do Tálamo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Camundongos , Núcleo Mediodorsal do Tálamo/fisiologia , Núcleo Mediodorsal do Tálamo/citologia , Masculino , Neurônios/fisiologia , Vias Neurais/fisiologia , Potenciais de Ação/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
3.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253582

RESUMO

The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.


Assuntos
Analgésicos Opioides , Neurônios , Humanos , Analgésicos Opioides/efeitos adversos , Neurônios/fisiologia , Respiração , Bulbo/fisiologia , Centro Respiratório/fisiologia
4.
Hist Philos Life Sci ; 46(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206484

RESUMO

There is surprisingly little philosophical work on conceptually spelling out the difference between the traits on which natural selection may be said to act (e.g. "having a high running speed") and mere circumstantial traits (e.g. "happening to be in the path of a forest fire"). I label this issue the "selectable traits problem" and, in this paper, I propose a solution for it. I first show that, contrary to our first intuition, simply equating selectable traits with heritable ones is not an adequate solution. I then go on to argue that two recent philosophical solutions to this problem-due to Peter Godfrey-Smith and Pierrick Bourrat-are unconvincing because they cannot accommodate frequency-dependent selection. The way out of this difficulty is, I argue, to accept that extrinsic properties dependent on relations between intrinsic properties of the population members should also count as selectable traits. I then show that my proposal is legitimized by more than the simple accommodation of frequency-dependent selection.


Assuntos
Idioma , Transtornos Mentais , Humanos , Fenótipo
5.
Front Cell Neurosci ; 17: 1241450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904732

RESUMO

How do neurons that implement cell-autonomous self-regulation of calcium react to knockout of individual ion-channel conductances? To address this question, we used a heterogeneous population of 78 conductance-based models of hippocampal pyramidal neurons that maintained cell-autonomous calcium homeostasis while receiving theta-frequency inputs. At calcium steady-state, we individually deleted each of the 11 active ion-channel conductances from each model. We measured the acute impact of deleting each conductance (one at a time) by comparing intrinsic electrophysiological properties before and immediately after channel deletion. The acute impact of deleting individual conductances on physiological properties (including calcium homeostasis) was heterogeneous, depending on the property, the specific model, and the deleted channel. The underlying many-to-many mapping between ion channels and properties pointed to ion-channel degeneracy. Next, we allowed the other conductances (barring the deleted conductance) to evolve towards achieving calcium homeostasis during theta-frequency activity. When calcium homeostasis was perturbed by ion-channel deletion, post-knockout plasticity in other conductances ensured resilience of calcium homeostasis to ion-channel deletion. These results demonstrate degeneracy in calcium homeostasis, as calcium homeostasis in knockout models was implemented in the absence of a channel that was earlier involved in the homeostatic process. Importantly, in reacquiring homeostasis, ion-channel conductances and physiological properties underwent heterogenous plasticity (dependent on the model, the property, and the deleted channel), even introducing changes in properties that were not directly connected to the deleted channel. Together, post-knockout plasticity geared towards maintaining homeostasis introduced heterogenous off-target effects on several channels and properties, suggesting that extreme caution be exercised in interpreting experimental outcomes involving channel knockouts.

6.
Int Immunopharmacol ; 123: 110760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549516

RESUMO

Systemic immune status influences the elimination of tumor cells. However, it remains unclear how chronic inflammation in allergic diseases affects the tumor microenvironment and tumorigenesis. To investigate tumor progression in a state of heightened allergic inflammation, we established a mouse model of allergic inflammation. We used house dust mite extract to induce a hyper-reactive systemic immune response. Additionally, we subcutaneously inoculated two types of cancer cells (CT26 and 4T1 tumors). We conducted immune profiling of the ex-vivo tumor mass using multicolor flow cytometry staining and performed dynamic analysis of peripheral cytokines to explore the significant relationship between the development of allergic inflammation and tumorigenesis. We found that mice in a state of allergic inflammation were more susceptible to developing tumors. Interestingly, the growth of T cell-inflamed was inhibited in the allergic state, while growth of non-T cell-inflamed was promoted. Further research revealed that natural killer (NK) cells with enhanced tumor-killing or immune-regulating abilities were more active in " hot " tumors. Inhibiting NK cell activity can partially alleviate the impact of allergic inflammation on tumor growth. In summary, our results suggest that NK cells play significant role in suppressing tumor growth in an allergic inflammation mouse model. This phenomenon seems to be closely linked to both the inherent characteristics of the tumor and its interaction with the immune system. The innate immune system can be mobilized to synergize with the adaptive immune system to inhibit tumor growth, which opens a new way for a tumor immunotherapy.


Assuntos
Inflamação , Neoplasias , Animais , Camundongos , Células Matadoras Naturais , Citocinas , Linfócitos T , Carcinogênese , Microambiente Tumoral
7.
Environ Sci Technol ; 57(31): 11373-11388, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470763

RESUMO

The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.


Assuntos
Nanoestruturas , Fósforo , Humanos , Fósforo/química , Nanoestruturas/toxicidade , Transporte Biológico
8.
Neuropharmacology ; 238: 109638, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482180

RESUMO

The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC/90 mg/dL) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-13 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.


Assuntos
Neocórtex , Peptídeo Intestinal Vasoativo , Camundongos , Masculino , Feminino , Animais , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Parvalbuminas , Potenciais de Ação , Interneurônios/fisiologia , Etanol/farmacologia , Córtex Pré-Frontal , Neocórtex/metabolismo , Somatostatina/farmacologia , Somatostatina/metabolismo
9.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514525

RESUMO

There is growing emphasis on developing green composites as a substitute for oil-based materials. In the pursuit of studying and enhancing the mechanical properties of these composites, tensile tests are predominantly employed, often overlooking the flexural properties. This study focuses on researching the flexural properties of abaca-fiber-reinforced bio-based high-density polyethylene (BioPE) composites. Specifically, composites containing 30 wt% of abaca fiber (AF) were treated with a coupling agent based on polyethylene functionalized with maleic acid (MAPE). The test results indicate that incorporating 8 wt% of the coupling agent significantly improved the flexural strength of the composites. Thereafter, composites with AF content ranging from 20 to 50 wt% were produced and subjected to flexural testing. It was observed that flexural strength was positively correlated with AF content. A micromechanics analysis was conducted to evaluate the contributions of the phases. This analysis involved assessing the mechanical properties of both the reinforcement and matrix to facilitate the modeling of flexural strength. The findings of this study demonstrate the feasibility of replacing oil-based matrices, such as high-density polyethylene (HDPE), with fully bio-based composites that exhibit comparable flexural properties to their oil-based counterparts.

10.
ACS Sens ; 8(7): 2681-2690, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37347966

RESUMO

Electrical properties of single cells are important label-free biomarkers of disease and immunity. At present, impedance flow cytometry (IFC) provides important means for high throughput characterization of single-cell electrical properties. However, the accuracy of the spherical single-shell electrical model widely used in IFC has not been well evaluated due to the lack of reliable and reproducible single-shell model particles with true-value electrical parameters as benchmarks. Herein, a method is proposed to evaluate the accuracy of the single-cell electrical model with cell-sized unilamellar liposomes synthesized through double emulsion droplet microfluidics. The influence of three key dimension parameters (i.e., the measurement channel width w, height h, and electrode gap g) in the single-cell electrical model were evaluated through experiment. It was found that the relative error of the electrical intrinsic parameters measured by IFC is less than 10% when the size of the sensing zone is close to the measured particles. It further reveals that h has the greatest influence on the measurement accuracy, and the maximum relative error can reach ∼30%. Error caused by g is slightly larger than w. This provides a solid guideline for the design of IFC measurement system. It is envisioned that this method can advance further improvement of IFC and accurate electrical characterization of single cells.


Assuntos
Lipossomos , Microfluídica , Citometria de Fluxo/métodos , Impedância Elétrica , Eletrodos
11.
Front Bioeng Biotechnol ; 11: 1150170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214305

RESUMO

Neuromuscular control loops feature substantial communication delays, but mammals run robustly even in the most adverse conditions. In vivo experiments and computer simulation results suggest that muscles' preflex-an immediate mechanical response to a perturbation-could be the critical contributor. Muscle preflexes act within a few milliseconds, an order of magnitude faster than neural reflexes. Their short-lasting action makes mechanical preflexes hard to quantify in vivo. Muscle models, on the other hand, require further improvement of their prediction accuracy during the non-standard conditions of perturbed locomotion. Our study aims to quantify the mechanical work done by muscles during the preflex phase (preflex work) and test their mechanical force modulation. We performed in vitro experiments with biological muscle fibers under physiological boundary conditions, which we determined in computer simulations of perturbed hopping. Our findings show that muscles initially resist impacts with a stereotypical stiffness response-identified as short-range stiffness-regardless of the exact perturbation condition. We then observe a velocity adaptation to the force related to the amount of perturbation similar to a damping response. The main contributor to the preflex work modulation is not the change in force due to a change in fiber stretch velocity (fiber damping characteristics) but the change in magnitude of the stretch due to the leg dynamics in the perturbed conditions. Our results confirm previous findings that muscle stiffness is activity-dependent and show that also damping characteristics are activity-dependent. These results indicate that neural control could tune the preflex properties of muscles in expectation of ground conditions leading to previously inexplicable neuromuscular adaptation speeds.

12.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904336

RESUMO

The use of bio-based matrices together with natural fibers as reinforcement is a strategy for obtaining materials with competitive mechanical properties, costs, and environmental impacts. However, bio-based matrices, unknown by the industry, can be a market entry barrier. The use of bio-polyethylene, which has properties similar to polyethylene, can overcome that barrier. In this study, composites reinforced with abaca fibers used as reinforcement for bio-polyethylene and high density polyethylene are prepared and tensile tested. A micromechanics analysis is deployed to measure the contributions of the matrices and reinforcements and to measure the evolution of these contributions regarding AF content and matrix nature. The results show that the mechanical properties of the composites with bio-polyethylene as a matrix were slightly higher than those of the composites with polyethylene as a matrix. It was also found that the contribution of the fibers to the Young's moduli of the composites was susceptible to the percentage of reinforcement and the nature of the matrices. The results show that it is possible to obtain fully bio-based composites with mechanical properties similar to those of partially bio-based polyolefin or even some forms of glass fiber-reinforced polyolefin.

13.
Small Methods ; 7(5): e2201595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869418

RESUMO

Nanovaccines have attracted intense interests for efficient antigen delivery and tumor-specific immunity. It is challenging to develop a more efficient and personalized nanovaccine to maximize all steps of the vaccination cascade by exploiting the intrinsic properties of nanoparticles. Here, biodegradable nanohybrids (MP) composed of manganese oxide nanoparticles and cationic polymers are synthesized to load a model antigen ovalbumin to form MPO nanovaccines. More interestingly, MPO could serve as autologous nanovaccines for personalized tumor treatment taking advantage of in situ released tumor-associated antigens induced by immunogenic cell death (ICD). The intrinsic properties of MP nanohybrids including morphology, size, surface charge, chemical, and immunoregulatory functions are fully exploited to enhance of all steps of the cascade and induce ICD. MP nanohybrids are designed to efficiently encapsulate antigens by cationic polymers, drain to lymph nodes by appropriate size, be internalized by dendritic cells (DCs) by rough morphology, induce DC maturation through cGAS-STING pathway, and enhance lysosomal escape and antigen cross-presentation through the "proton sponge effect". The MPO nanovaccines are found to efficiently accumulate in lymph nodes and elicit robust specific T-cell immune responses to inhibit the occurrence of ovalbumin-expressing B16-OVA melanoma. Furthermore, MPO demonstrate great potential to serve as personalized cancer vaccines through the generation of autologous antigen depot through ICD induction, activation of potent antitumor immunity, and reversal of immunosuppression. This work provides a facile strategy for the construction of personalized nanovaccines by exploiting the intrinsic properties of nanohybrids.


Assuntos
Morte Celular Imunogênica , Neoplasias , Humanos , Ovalbumina/química , Vacinação , Antígenos de Neoplasias , Polímeros
14.
Cell Rep ; 42(2): 112039, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749664

RESUMO

The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability. Diurnal changes in excitability are mediated by antiphase G-protein regulation of potassium and sodium currents that reduce excitability during the Light phase. Disruption of the circadian transcriptional machinery by conditional deletion of Bmal1 enhances excitability selectively during the Light phase by removing G-protein regulation. These results reveal that circadian transcriptional machinery regulates intrinsic excitability by coordinated regulation of ion channels by G-protein signaling, highlighting a potential novel mechanism of cell-autonomous oscillations.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Proteínas de Ligação ao GTP , Giro Denteado , Relógios Circadianos/fisiologia
15.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635250

RESUMO

Avoiding potentially harmful, and consuming safe food is crucial for the survival of living organisms. However, the perceived valence of sensory information can change following conflicting experiences. Pleasurability and aversiveness are two crucial parameters defining the perceived valence of a taste and can be impacted by novelty. Importantly, the ability of a given taste to serve as the conditioned stimulus (CS) in conditioned taste aversion (CTA) is dependent on its valence. Activity in anterior insula (aIC) Layer IV-VI pyramidal neurons projecting to the basolateral amygdala (BLA) is correlated with and necessary for CTA learning and retrieval, as well as the expression of neophobia toward novel tastants, but not learning taste familiarity. Yet, the cellular mechanisms underlying the updating of taste valence representation in this specific pathway are poorly understood. Here, using retrograde viral tracing and whole-cell patch-clamp electrophysiology in trained mice, we demonstrate that the intrinsic properties of deep-lying Layer IV-VI, but not superficial Layer I-III aIC-BLA neurons, are differentially modulated by both novelty and valence, reflecting the subjective predictability of taste valence arising from prior experience. These correlative changes in the profile of intrinsic properties of LIV-VI aIC-BLA neurons were detectable following both simple taste experiences, as well as following memory retrieval, extinction learning, and reinstatement.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Tonsila do Cerebelo/fisiologia , Paladar/fisiologia , Aprendizagem da Esquiva/fisiologia , Neurônios
16.
Food Sci Technol Int ; : 10820132221141944, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457215

RESUMO

Storage temperature fluctuation is a major problem faced in food and pharmaceutical industry, apart from prevailing fraud in marketing frozen products as fresh. The present work aimed to study the effect of intrinsic properties of chitosan on synthesis and performance of gold nanoparticles as smart packaging devices. Different types of Chitosan from shrimp waste were used as reducing and capping agent in the synthesis of metal nanoparticle. Time is taken to reduce gold atom to gold nanoparticles varied with the type of reducing agent, between 6 min 40 s to 15 min 02 s. The maximum absorbance (λmax) for AuNPs was observed between 517 and 530 nm. An increase in the concentration of chitosan resulted in smaller and uniform size AuNPs with size ranging from 8.09 to 9.95 nm compared with 14.44 to 19.88 nm for lower concentration of chitosan. Visible ruby red colour of AuNPs synthesised using trisodium citrate (TSC) and lower concentration of chitosan (0.1%) changed to colourless and grey to blue, respectively upon exposure to frozen condition (-18 °C ± 1 °C). UV Visible spectra indicated distinctly different (broader) spectrum with reduced peak intensity. A visible change in colour from ruby red to bluish and colourless state indicates that irrespective of the properties of available chitosan, it can be used for synthesis of gold nanoparticles as smart packaging to distinguish packed fresh/chilled/refrigerated products from frozen ones.

17.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446571

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons produce the final output from the brain to control pituitary gonadotropin secretion and thus regulate reproduction. Disruptions to gonadotropin secretion contribute to infertility, including polycystic ovary syndrome (PCOS) and idiopathic hypogonadotropic hypogonadism. PCOS is the leading cause of infertility in women and symptoms resembling PCOS are observed in girls at or near the time of pubertal onset, suggesting that alterations to the system likely occurred by that developmental period. Prenatally androgenized (PNA) female mice recapitulate many of the neuroendocrine phenotypes observed in PCOS, including altered time of puberty, disrupted reproductive cycles, increased circulating levels of testosterone, and altered gonadotropin secretion patterns. We tested the hypotheses that the intrinsic properties of GnRH neurons change with puberty and with PNA treatment. Whole-cell current-clamp recordings were made from GnRH neurons in brain slices from control and PNA females before puberty at three weeks of age and in adulthood to measure GnRH neuron excitability and action potential (AP) properties. GnRH neurons from adult females were more excitable and required less current to initiate action potential firing compared with three-week-old females. Further, the afterhyperpolarization (AHP) potential of the first spike was larger and its peak was delayed in adulthood. These results indicate development, not PNA, is a primary driver of changes to GnRH neuron intrinsic properties and suggest there may be developmentally-induced changes to voltage-gated ion channels in GnRH neurons that alter how these cells respond to synaptic input.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Camundongos , Animais , Androgênios/farmacologia , Hormônio Liberador de Gonadotropina , Potenciais de Ação , Maturidade Sexual/fisiologia , Neurônios/fisiologia , Síndrome do Ovário Policístico/etiologia , Gonadotropinas
18.
Bone Rep ; 17: 101623, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36213624

RESUMO

The differences in bone nanomechanical properties between cortical (Ct) and trabecular (Tb) bone remain uncertain, whereas knowing the respective contribution of each compartment is critical to understand the origin of bone strength. Our purpose was to compare bone mechanical and intrinsic properties of Ct and Tb compartments, at the bone structural unit (BSU) level, in iliac bone taken from a homogeneous untreated human population. Among 60 PMMA-embedded transiliac bone biopsies from untreated postmenopausal osteoporotic women (64 ± 7 year-old), >2000 BSUs were analysed by nanoindentation in physiological wet conditions [indentation modulus (elasticity), hardness, dissipated energy], by Fourier transform infrared (FTIRM) and Raman microspectroscopy (mineral and organic characteristics), and by X-ray microradiography (degree of mineralization of bone, DMB). BSUs were categorized based on tissue age, osteonal (Ost) and interstitial (Int) tissues location and bone compartments (Ct and Tb). Indentation modulus was higher in Ct than in Tb BSUs, both in Ost and Int. dissipated energy was higher in Ct than Tb, in Int BSUs. Hardness was not different between Ct and Tb BSUs. In Ost or Int BSUs, mineral maturity (conversion of non-apatitic into apatitic phosphates) was higher in Ct than in Tb, as well as for collagen maturity (Ost). Mineral content assessed as mineral/matrix (FTIRM and Raman) or as DMB, was lower in Ct than in Tb. Crystallinity (FTIRM) was similar in BSUs from Ct and Tb, and slightly lower in Ct than in Tb when measured by Raman, indicating that the crystal size/perfection was quite similar between Ct and Tb BSUs. The differences found between Ost and Int tissues were much higher than the difference found between Ct and Tb for all those bone material properties. Multiple regression analysis showed that Indentation modulus and dissipated energy were mainly explained by mineral maturity in Ct and by collagen maturity in Tb, and hardness by mineral content in both Ct and Tb. In conclusion, in untreated human iliac bone, Ct and Tb BSUs exhibit different characteristics. Ct BSUs have higher indentation modulus, dissipated energy (Int), mineral and organic maturities than Tb BSUs, without difference in hardness. Although those differences are relatively small compared to those found between Ost and Int BSUs, they may influence bone strength at macroscale.

19.
Adv Neurobiol ; 28: 63-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066821

RESUMO

This chapter will provide an introduction into motoneuron anatomy, electrophysiological properties, firing patterns focusing on development and also describing several pathological conditions that affect mononeurons. It starts with a historical retrospective describing the early landmark work into motoneurons. The next section lays out the various types of motoneurons (alpha, beta, and gamma) and their subclasses (fast-twitch fatigable, fast-twitch fatigue-resistant, and slow-twitch fatigue resistant), highlighting the functional relevance of this classification scheme. The third section describes the development of motoneurons' passive and active electrophysiological properties. This section also defines the major terms one uses in describing how a neuron functions electrophysiologically. The electrophysiological aspects of a neuron is critical to understanding how it behaves within a circuit and contributes to behavior since the firing of an action potential is how neurons communicate with each other and with muscles. The electrophysiological changes of motoneurons over development underlies how their function changes over the lifetime of an organism. After describing the properties of individual motoneurons, the chapter then turns to revealing how motoneurons interact within complex neural circuits, with other motoneurons as well as sensory neurons, and how these circuits change over development. Finally, this chapter ends with highlighting some recent advances made in motoneuron pathology, focusing on spinal muscular atrophy, amyotrophic lateral sclerosis, and axotomy.


Assuntos
Esclerose Lateral Amiotrófica , Atrofia Muscular Espinal , Esclerose Lateral Amiotrófica/patologia , Humanos , Neurônios Motores , Músculos , Estudos Retrospectivos
20.
Adv Neurobiol ; 28: 169-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066826

RESUMO

Beginning about half a century ago, the rules that determine how motor units are recruited during movement have been deduced. These classical experiments led to the formulation of the 'size principle'. It is now clear that motoneuronal size is not the only indicator of recruitment order. In fact, motoneuronal passive, active and synaptic conductances are carefully tuned to achieve sequential recruitment. More recent studies, over the last decade or so, show that the premotor circuitry is also functionally specialized and differentially recruited. Modular sub networks of interneurons and their post-synaptic motoneurons have been shown to drive movements with varying intensities. In addition, these modular networks are under the influence of neuromodulators, which are capable of acting upon multiple motor and premotor targets, thereby altering behavioral outcomes. We discuss the recruitment patterns of motoneurons in light of these new and exciting studies.


Assuntos
Interneurônios , Neurônios Motores , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA