Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 414: 125461, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647627

RESUMO

As a well known endocrine-disrupting and model chemical, bisphenol A (BPA) may pose a serious threat to human health, since it and its disinfection by-products (DBPs) have been detected in drinking water, urine, human colostrum, adipose tissue, and placenta samples. Although chlorinated BPAs (Cl-BPAs) and iodinated BPAs (I-BPAs) have been well studied, brominated BPAs (Br-BPAs), and mixed halogenated DBPs like bromo-iodo-BPAs (Br-I-BPAs), and bromo-chloro-iodo-BPAs (Cl-Br-I-BPAs) are less well understood. Notably, the role of iodide (I-) during chlorination is not well understood, since the studies of the I-DBPs mainly focus on their genotoxicity and cytotoxicity. To understand the formation mechanisms of halogenated bisphenol A (HBPs) during chlorination with bromide (Br-) and/or I-, and the role of I- during chlorination, three set of reactions were performed in the laboratory ("BPA + chlorine + Br-", "BPA + chlorine + I-" and "BPA + chlorine + Br- +I-" assigned as group A, B and C respectively). Thirty HBPs were identified and 18 of them were never reported before. I- increases the transformation rate of BPA into HBPs as I-BPAs act as intermediate HBPs during chlorination that easily react with HClO/ClO- and HBrO/BrO- to form Cl-BPAs and Br-BPAs. HIO/IO- showed higher reactivity towards BPA and HBPs than that of HBrO/BrO- and HClO/ClO-. The recycling of I- was observed in the reactions of "BPA + chlorine + I-" and "BPA + chlorine + Br- +I-", which may explain why I- can induce BPA to transform into HBPs and suggests that I- may act as a catalyst during the BPA chlorination reactions. The reaction pathways are proposed which present the reactions of BPA and HBPs with HClO/ClO-, HBrO/BrO-, and HIO/IO-, as well as the recycling of I-. This study describes the potential DBP formation and transformation mechanisms of BPA and its 16 alternatives, as well as the role of I- on the transformation of phenol compounds during chlorination.

2.
Best Pract Res Clin Endocrinol Metab ; 28(2): 151-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24629858

RESUMO

DEHAL1 (also named IYD) is the thyroidal enzyme that deiodinates mono- and diiodotyrosines (MIT, DIT) and recycles iodine, a scarce element in the environment, for the efficient synthesis of thyroid hormone. Failure of this enzyme leads to the iodotyrosine deiodinase deficiency (ITDD), characterized by hypothyroidism, compressive goiter and variable mental retardation, whose diagnostic hallmark is the elevation of iodotyrosines in serum and urine. However, the specific diagnosis of this type of hypothyroidism is not routinely performed, due to technical and practical difficulties in iodotyrosine determinations. A handful of mutations in the DEHAL1 gene have been identified as the molecular basis for the ITDD. Patients harboring DEHAL1 defects so far described all belong to consanguineous families, and psychomotor deficits were present in some affected individuals. This is probably due to the lack of biochemical expression of the disease at the beginning of life, which causes ITDD being undetected in screening programs for congenital hypothyroidism, as currently performed. This worrying feature calls for efforts to improve pre-clinical detection of iodotyrosine deiodinase deficiency during the neonatal time. Such a challenge poses questions of patho-physiological (natural history of the disease, environmental factors influencing its expression) epidemiological (prevalence of ITDD) and technical nature (development of optimal methodology for safe detection of pre-clinical ITDD), which will be addressed in this review.


Assuntos
Hipotireoidismo Congênito/diagnóstico , Hidrolases/deficiência , Hipotireoidismo/etiologia , Iodeto Peroxidase/deficiência , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Biomarcadores/análise , Hipotireoidismo Congênito/epidemiologia , Di-Iodotirosina/metabolismo , Genótipo , Humanos , Hidrolases/genética , Hipotireoidismo/diagnóstico , Recém-Nascido , Iodetos/metabolismo , Monoiodotirosina/sangue , Monoiodotirosina/metabolismo , Triagem Neonatal , Fenótipo , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA