Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(8): nwae238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131923

RESUMO

Rechargeable magnesium batteries (RMBs) have received increased attention due to their high volumetric capacity and safety. Nevertheless, the sluggish diffusion kinetics of highly polarized Mg2+ in host lattices severely hinders the development of RMBs. Herein, we report an electron injection strategy for modulating the Mo 4d-orbital splitting manner and first fabricate a dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure to accelerate Mg2+ diffusion. The electron injection strategy triggers weak Jahn-Teller distortion in MoO6 octahedra and reorganization of the Mo 4d-orbital, leading to a partial phase transition from orthorhombic phase MoO2.8F0.2 to cubic phase MoO2.4F0.6. As a result, the designed heterostructure generates a built-in electric field, simultaneously improving its electronic conductivity and ionic diffusivity by at least one order of magnitude compared to MoO2.8F0.2 and MoO2.4F0.6. Importantly, the assembled MoO2.8F0.2/MoO2.4F0.6//Mg full cell exhibits a remarkable reversible capacity of 172.5 mAh g-1 at 0.1 A g-1, pushing forward the orbital-scale manipulation for high-performance RMBs.

2.
Nanotechnology ; 32(27)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33740775

RESUMO

In this study, we investigated the effect of an Al2O3barrier layer in an all-solid-state inorganic Li-based nano-ionic synaptic transistor (LST) with Li3PO4electrolyte/WOxchannel structure. Near-ideal synaptic behavior in the ultralow conductance range (∼50 nS) was obtained by controlling the abrupt ion migration through the introduction of a sputter-deposited thin (∼3 nm) Al2O3interfacial layer. A trade-off relationship between the weight update linearity and on/off ratio with varying Al2O3layer thickness was also observed. To determine the origin of the Al2O3barrier layer effects, cyclic voltammetry analysis was conducted, and the optimal ionic diffusivity and mobility were found to be key parameters in achieving ideal synaptic behavior. Owing to the controlled ion migration, the retention characteristics were considerably improved by the Al2O3barrier. Finally, a highly improved pattern recognition accuracy (83.13%) was achieved using the LST with an Al2O3barrier of optimal thickness.

3.
ChemSusChem ; 13(18): 5031-5040, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32663377

RESUMO

Excellent structural stability, high operating voltage, and high capacity have made Na3 V2 (PO4 )2 F3 a promising cathode material for sodium-ion batteries. However, high-temperature battery performances and heat generation measurements have not been systematically reported yet. Carbon-coated Na3 V2 (PO4 )2 F3 @MWCNT (multi-walled carbon nanotube) samples are fabricated by a hydrothermal-assisted sol-gel method and the electrochemical performances are evaluated at three different temperatures (25, 45, and 55 °C). The well-crystallized Na3 V2 (PO4 )2 F3 @MWCNT samples exhibit good cycling stability at both low and high temperatures; they deliver an initial discharge capacity of 120-125 mAhg-1 at a 1 C rate with a retention of 53 % capacity after 1,400 cycles with 99 % columbic efficiency. The half-cell delivers a capacity of 100 mAhg-1 even at a high rate of 10 C at room temperature. Furthermore, the Na3 V2 (PO4 )2 F3 @MWCNT samples show good long-term durability; the capacity loss is an average of 0.05 % per cycle at a 1 C rate at 55 °C. Furthermore, ionic diffusivity and charge transfer resistance are evaluated as functions of state of charge, and they explain the high electrochemical performance of the Na3 V2 (PO4 )2 F3 @MWCNT samples. In-situ heat generation measurements reveal reversible results upon cycling owing to the high structural stability of the material. Excellent electrochemical performances are also demonstrated in the full-cell configuration with hard carbon as well as antimony Sb/C anodes.

4.
ACS Appl Mater Interfaces ; 11(1): 774-783, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525421

RESUMO

Magnesium (Mg) metal has been widely explored as an anode material for Mg-ion batteries (MIBs) owing to its large specific capacity and dendrite-free operation. However, critical challenges, such as the formation of passivation layers during battery operation and anode-electrolyte-cathode incompatibilities, limit the practical application of Mg-metal anodes for MIBs. Motivated by the promise of group XIV elements (namely, Si, Ge, and Sn) as anodes for lithium- and sodium-ion batteries, here, we conduct systematic first-principles calculations to explore the thermodynamics and kinetics of group XIV anodes for MIBs and to identify the atomistic mechanisms of the electrochemical insertion reactions of Mg ions. We confirm the formation of amorphous Mg xX phases (where X = Si, Ge, and Sn) in anodes via the breaking of the stronger X-X bonding network replaced by weaker Mg-X bonding. Mg ions have higher diffusivities in Ge and Sn anodes than in Si, resulting from weaker Ge-Ge and Sn-Sn bonding networks. In addition, we identify thermodynamic instabilities of Mg xX that require a small overpotential to avoid aggregation (plating) of Mg at anode/electrolyte interfaces. Such comprehensive first-principles calculations demonstrate that amorphous Ge and crystalline Sn can be potentially effective anodes for practical applications in MIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA