Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731801

RESUMO

Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.


Assuntos
Medicago truncatula , Folhas de Planta , Pulvínulo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Pulvínulo/metabolismo , Movimento , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Mimosa/fisiologia , Mimosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
ACS Appl Mater Interfaces ; 14(6): 8036-8047, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119835

RESUMO

Conjugated quinones are promising cathode materials for sodium-ion batteries. However, the contemporary primary conjugated quinones cathodes still hold to limited capacity, poor rate performance and low cyclability, due to the poor electronic and ionic conductivity. Herein, a series of high-performance conjugated-quinones@MXene hybrid cathodes is constructed by an in situ polymerization-assembly strategy based on the hydrogen bond and S-Ti interaction. The PAQS@Ti3C2Tx MXene hybrid, as a typical example, exhibits sandwiched structure with intimate PAQS@MXene contact, resulting in efficient interfacial mass transfer. The assembled MXene is able to build interconnected conductive channels in the hybrid cathodes for continuous and fast electrons/ions transport, which is verified by both the experimental results and density functional theory (DFT) calculations. As a result, the optimal PAQS@MXene hybrid electrode delivers excellent electrochemical performances with high capacity (∼242 mA h g-1 at 100 mA g-1), superior fast-charge/discharge ability (∼148 and 121 mA h g-1 at 5 and 10 A g-1, respectively), and ultralong cycle life (capacity as high as 57 mA h g-1 after 9000 cycles at 5 A g-1), which are more superior to that of the pure PAQS electrodes. Besides, the analogous PPTS@Ti3C2Tx MXene hybrid cathode also shows better performances compared to the pure materials.

3.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809183

RESUMO

Packed red blood cells (pRBCs), the most commonly transfused blood product, are exposed to environmental disruptions during storage in blood banks. In this study, temporal sequence of changes in the ion exchange in pRBCs was analyzed. Standard techniques commonly used in electrolyte measurements were implemented. The relationship between ion exchange and red blood cells (RBCs) morphology was assessed with use of atomic force microscopy with reference to morphological parameters. Variations observed in the Na+, K+, Cl-, H+, HCO3-, and lactate ions concentration show a complete picture of singly-charged ion changes in pRBCs during storage. Correlation between the rate of ion changes and blood group type, regarding the limitations of our research, suggested, that group 0 is the most sensitive to the time-dependent ionic changes. Additionally, the impact of irreversible changes in ion exchange on the RBCs membrane was observed in nanoscale. Results demonstrate that the level of ion leakage that leads to destructive alterations in biochemical and morphological properties of pRBCs depend on the storage timepoint.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/metabolismo , Troca Iônica , Manejo de Espécimes/métodos , Carbonatos/metabolismo , Membrana Eritrocítica , Humanos , Íons/metabolismo , Ácido Láctico/metabolismo , Microscopia de Força Atômica , Potássio/metabolismo , Sódio/metabolismo
4.
Nanotechnology ; 32(27)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33765671

RESUMO

Lithium-sulfur batteries (LSBs) have gained intense research enthusiasm due to their high energy density. Nevertheless, the 'shuttle effect' of soluble polysulfide (a discharge product) reduces their cycling stability and capacity, thus restricting their practical application. To tackle this challenging issue, we herein report a sulfonated covalent organic framework modified separator (SCOF-Celgard) that alleviates the shuttling of polysulfide anions and accelerates the migration of Li+ions. Specifically, the negatively charged sulfonate can inhibit the same charged polysulfide anion through electrostatic repulsion, thereby improving the cycle stability of the battery and preventing the Li-anode from being corroded. Meanwhile, the sulfonate groups may facilitate the positively charged lithium ions to pass through the separator. Consequently, the battery assembled with the SCOF-Celgard separator exhibits an 81.1% capacity retention after 120 cycles at 0.5 C, which is far superior to that (55.7%) of the battery with a Celgard separator. It has a low capacity degradation of 0.067% per cycle after 600 cycles at 1 C, and a high discharge capacity (576 mAh g-1) even at 2 C. Our work proves that the modification of a separator with a SCOF is a viable and effective route for enhancing the electrochemical performance of a LSB.

5.
Materials (Basel) ; 13(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287334

RESUMO

A non-equilibrium diffusion-reaction model is proposed to describe chloride transport and binding in cementitious materials. A numerical solution for this non-linear transport with reaction problem is obtained using the finite element method. The effective chloride diffusion coefficients and parameters of the chloride binding are determined using the inverse method based on a diffusion-reaction model and experimentally measured chloride concentrations. The investigations are performed for two significantly different cements: ordinary Portland and blast furnace cements. The results are compared with the classical diffusion model and appropriate apparent diffusion coefficients. The role of chloride binding, with respect to the different binding isotherms applied, in the overall transport of chlorides is discussed, along with the applicability of the two models. The proposed work allows the determination of important parameters that influence the longevity of concrete structures. The developed methodology can be extended to include more ions, electrostatic interactions, and activity coefficients for even more accurate estimation of the longevity.

6.
ACS Appl Mater Interfaces ; 12(43): 48533-48541, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33063988

RESUMO

Aqueous organic-based flow batteries are increasingly receiving attention owing to their appealing traits of high safety and low cost. An economic and high-performance membrane is always regarded as the heart of the batteries. Here, we introduce a cost-effective, homemade porous membrane with high performance for alkaline quinone-based flow batteries. The membrane is constituted by highly stable poly(ether sulfone) (PES) and sulfonated poly(ether ether ketone) (SPEEK) that serves dual functions of (1) adjusting the membrane microstructure and (2) endowing the membrane with a charge trait. Benefiting from the well-tuned structure and charge property of the membrane, a high ion selectivity and transport of OH- with much higher mobility serving as the primary charge-balancing ion can be realized. By employing alkaline alizarin red (ARS)/ferro-ferricyanide flow battery as the platform, a battery delivers a coulombic efficiency (CE) of 98.28% and an energy efficiency (EE) of 85.81% at 40 mA cm-2, which is higher than that of the battery with a Nafion 212 membrane (CE ∼ 99.19%, EE ∼ 84.60%), however, with much lower cost. The successful application of homemade porous membrane may provide a new strategy to engineer and fabricate membranes with high efficiency for alkaline quinone-based flow batteries and further decrease the batteries' cost.

7.
BMC Genomics ; 20(1): 89, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683053

RESUMO

BACKGROUND: Eggshell formation takes place in the shell gland of the oviduct of laying hens. The eggshell is rich in calcium and various glycoproteins synthesised in the shell gland. Although studies have identified genes involved in eggshell formation, little is known about the regulation of genes in the shell gland particularly in a temporal manner. The current study investigated the global gene expression profile of the shell gland of laying hens at different time-points of eggshell formation using RNA-Sequencing (RNA-Seq) analysis. RESULTS: Gene expression profiles of the shell gland tissue at 5 and 15 h time-points were clearly distinct from each other. Out of the 14,334 genes assessed for differential expression in the shell gland tissue, 278 genes were significantly down-regulated (log2 fold change > 1.5; FDR < 0.05) and 413 genes were significantly up-regulated at 15 h relative to the 5 h time-point of eggshell formation. The down-regulated genes annotated to Gene Ontology (GO) terms showed anion transport, synaptic vesicle localisation, organic anion transport, secretion and signal release as the five most enriched terms. The up-regulated gene annotation showed regulation of phospholipase activities, alanine transport, transmembrane receptor protein tyrosine kinase signalling pathway, regulation of blood vessels diameter and 3, 5-cyclic nucleotide phosphodiesterase activity as the five most enriched GO terms. The putative functions of genes identified ranged from calcium binding to receptor activity. Validation of RNA-Seq results through qPCR showed a positive correlation. CONCLUSIONS: The down-regulated genes at 15 h relative to the 5 h time-point were most likely involved in the transport of molecules and synthesis activities, initiating the formation of the eggshell. The up-regulated genes were most likely involved in calcium transportation, as well as synthesis and secretory activities of ions and molecules, reflecting the peak stage of eggshell formation. The findings in the current study improve our understanding of eggshell formation at the molecular level and provide a foundation for further studies of mRNA and possibly microRNA regulation involved in eggshell formation in the shell gland of laying hens.


Assuntos
Casca de Ovo , Oviductos/metabolismo , Transcriptoma , Animais , Galinhas/genética , Galinhas/metabolismo , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Análise de Sequência de RNA
8.
Environ Sci Pollut Res Int ; 25(4): 3313-3319, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29149445

RESUMO

This research focused on the influence of different separator compartments on the performance of capacitive deionization (CDI) cells in terms of brackish water treatment. For comparison, different separators including filter paper(FP), carbon nanotube (CNT), and stainless steel fiber (SSF) on deionization and desorption rate of salt were examined. The best performance was obtained when the CNT separator was packed, followed by SSF and FP. Reducing the cell voltage from 1.2 to 0.4 V decreased the salt removal and electrode regeneration rate of SSF-CDI. Electrochemical impedance spectrometry (EIS) analysis revealed that the resistance and specific capacitance of separator materials are essential to the desalination and desorption performance of CDI. The electric double layers (EDLs) accelerated the ion transfer in the flow chamber due to storing excess ions, therefore increasing the desalination and electrode regeneration rate.


Assuntos
Purificação da Água/instrumentação , Purificação da Água/métodos , Adsorção , Capacitância Elétrica , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Íons , Cloreto de Sódio/isolamento & purificação
9.
J Bioenerg Biomembr ; 49(2): 149-158, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28070860

RESUMO

The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.


Assuntos
Encéfalo/metabolismo , Epilepsia Reflexa/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Ratos Endogâmicos
10.
Water Res ; 85: 371-6, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26360230

RESUMO

A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate.


Assuntos
Carvão Vegetal/química , Salinidade , Purificação da Água/métodos , Cloreto de Sódio/análise , Cloreto de Sódio/química
11.
Electromagn Biol Med ; 34(2): 167-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098531

RESUMO

We have performed a series of experiments applying high voltage between two electrodes, immersed in two beakers containing bidistilled water in a way similar to experiments conducted by Fuchs and collaborators, which showed that a water bridge can be formed between the two containers. We also observed the formation of water bridge. Moreover, choosing different pairs of electrodes depending on the material they are made up of, we observed that copper ions flow can pass along the bridge if the negative electrode is made up of copper. We show that the direction of the flux not only depends on the applied electrostatic field but on the relative electronegativity of the electrodes too. These results open new perspectives in understanding the properties of water. We suggest a possible explanation of the obtained results.


Assuntos
Cobre/química , Condutividade Elétrica , Água/química , Eletrodos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA