Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.715
Filtrar
1.
J Colloid Interface Sci ; 678(Pt C): 873-885, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39321643

RESUMO

Iron oxide nanoparticles (IONPs) synthesized via thermal decomposition find diverse applications in biomedicine owing to precise control of their physico-chemical properties. However, use in such applications requires phase transfer from organic solvent to water, which remains a bottleneck. Through the thermal decomposition of iron oleate (FeOl), we systematically investigate the impact of synthesis conditions such as oleic acid (OA) amount, temperature increase rate, dwell time, and solvent on the size, magnetic saturation, and crystallinity of IONPs. Solvent choice significantly influences these properties, manipulating which, synthesis of monodisperse IONPs within a tunable size range (10-30 nm) and magnetic properties (75 to 42 Am2Kg-1) is obtained. To enable phase transfer of IONPs, we employ flash nanoprecipitation (FNP) for the first time as a method for scalable and precise size control, demonstrating its potential over conventional methods. Poly(lactic-co-glycolic acid) (PLGA)-coated IONPs with hydrodynamic diameter (Hd) in the range of 250 nm, high colloidal stability and high IONPs loadings up to 43% were obtained, such physicochemical properties being tuned exclusively by the size and hydrophobicity of starting IONPs. They showed no discernible cytotoxicity in human dermal fibroblasts, highlighting the applicability of FNP as a novel method for the functionalization of hydrophobic IONPs for biomedicine.

2.
J Environ Sci (China) ; 150: 1-13, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306387

RESUMO

Iron oxide nanoparticles (IONPs) have wide applications in the biomedical field due to their outstanding physical and chemical properties. However, the potential adverse effects and related mechanisms of IONPs in human organs, especially the lung, are still largely ignored. In this study, we found that group-modified IONPs (carboxylated, aminated and silica coated) induce slight lung cell damage (in terms of the cell cycle, reactive oxygen species (ROS) production, cell membrane integrity and DNA damage) at a sublethal dosage. However, aminated IONPs could release more iron ions in the lysosome than the other two types of IONPs, but the abnormally elevated iron ion concentration did not induce ferroptosis. Intriguingly, amino-modified IONPs aggravated the accumulation of intracellular peroxides induced by the ferroptosis activator RSL3 and thus caused ferroptosis in vitro, and the coadministration of amino-modified IONPs and RSL3 induced more severe lung injury in vivo. Therefore, our data revealed that the surface functionalization of IONPs plays an important role in determining their potential pulmonary toxicity, as surface modification influences their degradation behavior. These results provide guidance for the design of future IONPs and the corresponding safety evaluations and predictions.


Assuntos
Ferroptose , Ferro , Lisossomos , Ferroptose/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Ferro/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Morte Celular/efeitos dos fármacos
3.
Nanotechnology ; 36(2)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417687

RESUMO

Elongated akaganéite (ß-FeOOH) nanoparticles were prepared by a forced hydrolysis route using FeCl3·6H2O employing various urea concentrations.ß-FeOOH nanoparticles stabilized within the SiO2matrix were annealed at different temperatures, ranging from 500 °C to 1300 °C. It was observed thatß-FeOOH underwent a temperature-induced conversion toγ-Fe2O3and subsequently toϵ-Fe2O3. Due to theϵ-Fe2O3phase formation, the coercivity rapidly increased to 16 kOe for samples annealed at 900 °C and reached values up to 21.5 kOe when annealed at 1200 °C. At a higher temperature of 1300 °C, theϵ-Fe2O3phase transforms mainly into theα-Fe2O3phase, which causes the coercivity to rapidly drop to negligible values.

4.
Front Chem ; 12: 1457265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39385963

RESUMO

The present work aimed to highlight an efficient, readily accessible, and cost-effective adsorbent derived from Dalbergia sissoo (DS) leaf powder for removing the environmentally hazardous dye "alizarin red S" (ARS) from hydrous medium. A variant of the adsorbent is activated via sulfuric acid and composited with magnetic iron oxide nanoparticles (DSMNC). Both adsorbents are thoroughly characterized using techniques such as Fourier transform infrared spectroscopy, point of zero charge, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which show that they have a porous structure rich in active sites. Different adsorption conditions are optimized with the maximum removal efficiency of 76.63% for DS and 97.89% for DSMNC. The study was highlighted via the application of various adsorption isotherms, including Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich, to adsorption data. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were utilized to investigate the kinetics and mechanism of adsorption. The Freundlich model and pseudo-second-order kinetics exhibited the best fit, suggesting a combination of physical interactions, as confirmed by the D-R and Temkin models. The dominant adsorbate-adsorbent interactive interactions responsible for ARS removal were hydrogen bonding, dispersion forces, and noncovalent aromatic ring adsorbent pi-interactions. Thermodynamic parameters extracted from adsorption data indicated that the removal of the mutagenic dye "ARS" was exothermic and spontaneous on both DS and DSMNC, with DSMNC exhibiting higher removal efficiency.

5.
Chemphyschem ; : e202400835, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39403857

RESUMO

We have used grazing incidence X-ray absorption near edge spectroscopy (XANES) to investigate the behavior of monolayer FeOx films on Pt(111) under near ambient pressure CO oxidation conditions with a total gas pressure of 1 bar. Spectra indicate reversible changes during oxidation and reduction by O2 and CO at 150ºC, attributed to a transformation between FeO bilayer and FeO2 trilayer phases. The trilayer phase is also reduced upon heating in CO+O2, consistent with a Mars-van-Krevelen type mechanism for CO oxidation. At higher temperatures, the monolayer film dewets the surface, resulting in a loss of the observed reducibility. A similar iron oxide film prepared on Au(111) shows little sign of reduction or oxidation under the same conditions. The results highlight the unique properties of monolayer FeO and the importance of the Pt support in this reaction. The study furthermore demonstrates the power of grazing-incidence XAFS for in situ studies of these model catalysts under realistic conditions.

6.
Int J Pharm ; 666: 124838, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39419365

RESUMO

This study investigates the anticancer effects of SPION-based silica nanoparticles carrying 5-fluorouracil (5-FU) or oxaliplatin (OX), and metformin (MET) on colorectal cancer cells. Nanocarriers were equipped with pH-responsive gold gatekeepers for controlled release, PEGylation for longer circulation, and folic acid (FA) for targeted delivery. The effects were evaluated by investigating cell viability, cellular uptake, flow cytometry, and clonogenic assay in vitro. The efficacy of the system was also tested in vivo on C57BL/6 mice bearing HT-29 tumors, and potential side effects were evaluated. Nanocarriers were synthesized with hydrodynamic diameters of 79.8 nm for 5-FU and 85.2 nm for OX; zeta potentials of -21 and -22 mV, respectively, and remained stable after 72 h. Encapsulation efficiencies were 85 % for 5-FU, 80 % for OX, and 83 % for MET, with loading capacities of 44 %, 38 %, and 41 %, respectively. Drug release in acidic buffer was 38.7 % for 5-FU, 32.8 % for OX, and 43.5 % for MET. MTT assay showed increased toxicity due to FA conjugation, while PEGylation reduced the hemolysis activity. Targeted nanocarriers demonstrated superior cellular uptake and tumor localization compared to non-targeted variants. The combination of 5-FU-MET and OX-MET nanocarriers with radiation therapy (RT) demonstrated the greatest effect on their antitumor activity, accompanied by minimal side effects indicating effective tumor targeting in vivo. MRI and CT imaging further supported these findings. This study underscores the synergistic impact of MET alongside RT on the inhibition of cancer cells and tumor growth for both targeted 5-FU and OX nanocarriers reflecting the significant radiosensitizing properties of MET.

7.
Gels ; 10(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39451283

RESUMO

High-quality water availability is substantial for sustaining life, so its contamination presents a serious problem that has been the focus of several studies. The presence of heavy metals, such as cadmium, is frequently studied due to the increase in the contamination levels caused by fast industrial expansion. Cadmium ions were removed from aqueous solutions at pH 7.0 by chitosan-magnetite (ChM) xerogel beads and chitosan-FeO (ChF) xerogel beads in batch systems. Kinetic studies were best modeled by the Elovich model. The adsorption isotherms obtained showed an inflection point suggesting the formation of a second layer, and the BET model adjusted to liquid-solid systems was adequate for the description of the experimental data. Maximum uptake capacities of 36.97 ± 0.77 and 28.60 ± 2.09 mg Cd/g xerogel were obtained for ChM and ChF, respectively. The studied composites are considered promising adsorbent materials for removing cadmium ions from aqueous systems.

8.
Chemosphere ; 366: 143505, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384136

RESUMO

In this study, heterostructures based on Bismuth molybdite/iron oxide (Bi2MoO6/Fe2O3) thin films were fabricated by a dip-coating technique using precursor solutions. The heterostructures were deposited on fluorine-doped tin oxide glass substrates. From a detailed characterization using X-ray diffraction and X-ray photoelectron spectroscopy, the formation of the orthorhombic phase for Bi2MoO6 and the co-existence of hematite and maghemite in Fe2O3 was demonstrated. Meanwhile, the field emission scanning electron microscopy cross-section images confirm the formation of well-defined Bi2MoO6 film under the Fe2O3 deposition. The optical band gap energies for the heterostructure obtained were estimated from the diffuse reflectance spectra and ranged from 2.3 to 3.5 eV. Photoluminescence analysis revealed an improved separation and faster transfer of photogenerated electrons and holes for the Bi2MoO6/Fe2O3 (Het) film. The best oxytetracycline (OTC) removal percentage through photoelectrocatalytic treatment was 96.85% using the Het. Besides, were carried out the variation of parameters which affect the OTC photoelectrocatalytic degradation as pH, potential applied, and scavenger assay. The 1O2 was the oxidant predominate, which attack the OTC ring to initiate and accelerate the degradation process. Based on the analysis of degradation intermediates and characteristics of Bi2MoO6/Fe2O3, possible degradation pathways and mechanisms of OTC were displayed. An enhancement of oxytetracycline degradation efficiency of Het fabricated compared to pristine oxides was achieved mainly due to avoid the charge recombination of photogenerated electron-hole pairs provided by Direct Z-scheme heterostructure. Finally, the Het fabricated represents a promising material for efficient and sustainable pharmaceutical removal applications.

9.
BMC Vet Res ; 20(1): 455, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385161

RESUMO

BACKGROUND AND AIM: Contamination from increased anthropogenic activities poses a threat to human health as well as the ecosystem. To develop a nanotechnological approach to improve aqua fisheries, we synthesized magnetic hematite nanoparticle-based gel and evaluated its efficacy in a cadmium-polluted closed system to decontaminate water and improve tilapia fish health. METHODS: Green iron oxide nanoparticles were biosynthesized by the metabolite of bacillus subtilis and incorporated into polyvinyl alcohol to construct a hydrogel by cryogelation. KEY FINDINGS: The cryogel had interconnected macropores with diameters widely ranging between 20 and 200 µm and could be free-floating in water. When applied in cadmium-polluted tilapia culture, this nanogel reduced turbidity and ammonia in the aquarium, adsorbed cadmium from the water with a larger quantity on the gel's outer surface than in its center., and reduced cadmium concentration in tilapia's liver, gills, and muscles. Application of this nano-based cryogel reduced the toxic effects of cadmium on tilapia fish. It maintained hepatic and renal cell nuclear integrity as determined by comet assay. This nano-treatment also reversed the cadmium-induced elevations of plasma lipids, glucose, stress marker cortisol, the hepatic enzymes AST and ALT, and the kidney function marker urea, and improved the lymphocytopenia and other hematological functions in tilapia fish intoxicated by cadmium.


Assuntos
Bacillus subtilis , Criogéis , Nanopartículas Magnéticas de Óxido de Ferro , Tilápia , Poluentes Químicos da Água , Animais , Criogéis/química , Bacillus subtilis/metabolismo , Tilápia/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Cádmio , Aquicultura , Compostos Férricos/química , Compostos Férricos/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos
10.
J Biomed Phys Eng ; 14(5): 447-456, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39391281

RESUMO

Background: The application of nanotechnology in the molecular diagnosis and treatment of cancer is essential. Objective: This study aimed to investigate the influence of curcumin-coated ultra-small superparamagnetic iron oxide (USPIO) as a T1 contrast agent in Magnetic Resonance Imaging (MRI). Material and Methods: In this experimental study, the influence of curcumin-coated USPIO (Fe3O4@C) on the diagnosis of the cancer cell line was investigated. After synthesis, characterization, and relaxation of Fe3O4@C, the contrast changes in T1-weight MRI to mouse colon carcinoma 26 cell line were evaluated in vitro. Results: Fe3O4@C nanoparticles (NPs) are good at imaging; based on a relaxometry test, the r1 and r2 relaxivities of Dotarem were 3.139 and 0.603 mM-1s-1, respectively. Additionally, the r1 and r2 relaxivities of Fe3O4@C were 3.792 and 1.3 mM-1s-1, respectively, with the rate of 2.155 of r2/r1 NPs. Conclusion: The NPs can be identified as a positive contrast agent with a weight of T1 in MRI. The coresh-ell Fe3O4@C NPs can be effective in cancer treatment and diagnosis because of the therapeutic effects of curcumin and the properties of USPIO.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39444371

RESUMO

Iron oxide nanoparticles (IONPs) have shown great promise in biomedical applications, particularly as MRI contrast agents due to their magnetic properties and biocompatibility. Although several IONPs have been approved by regulatory agencies as MRI contrast agents, their primary application as negative contrast agents limits their usage. Additionally, there is an emerging need for the development of molecular contrast agents that can specifically target biomarkers, enabling more accurate and sensitive diagnostics. To address these challenges, we exploited the engineerability of proteins to stabilize IONPs with tailored magnetic properties, creating protein-stabilized iron oxide nanoparticles (Prot-IONPs) and leveraged the chemical diversity of proteins to functionalize Prot-IONPs with targeting moieties. As a proof-of-concept, we used alendronate (Ald) to target atherosclerotic plaques in the aorta. Simple protein functionalization allowed targeting while maintaining the stability and relaxation properties of the Prot-IONPs. Prot-IONPs-Ald successfully enabled positive contrast imaging of atherosclerotic plaques in vivo in an atherosclerotic mouse model (ApoE-/- mice on a high-fat diet). This study demonstrates the potential of engineering protein-nanoparticle hybrids as versatile platforms for developing targeted in vivo MRI contrast agents.

12.
Cureus ; 16(9): e69957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39445281

RESUMO

Epidermoid cyst in intrapancreatic accessory spleen (ECIPAS) is a rare benign condition that occasionally mimic malignant pancreatic neoplasms. We present a case of ECIPAS in a 53-year-old asymptomatic male, initially discovered incidentally during imaging for a suspected hepatic hemangioma. The lesion, located in the pancreatic tail, demonstrated characteristic imaging features on contrast-enhanced computed tomography and superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance imaging (MRI), including a cystic component with peripheral solid tissue exhibiting splenic enhancement patterns. Despite these typical ECIPAS findings, the lesion increased in size from 38 × 33 mm to 50 × 45 mm over 12 months, accompanied by a significant rise in serum carbohydrate antigen 19-9 (CA19-9) from 21 to 330 U/mL. This clinical progression raised concerns about potential malignancy, leading to a robot-assisted spleen-preserving distal pancreatectomy. Histopathological examination confirmed the diagnosis of ECIPAS. Postoperatively, the patient's serum CA19-9 levels normalized. This case highlights that ECIPAS can complicate clinical decision-making through size increase and CA19-9 elevation, complicating preoperative diagnosis. However, careful analysis of imaging characteristics, particularly on SPIO-enhanced MRI, can aid in accurate diagnosis.

13.
Acta Radiol ; : 2841851241290646, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449316

RESUMO

BACKGROUND: Dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) can reflect the angiogenesis of ischemic stroke. PURPOSE: To investigate the value of DSC-MRI with ultrasmall superparamagnetic particles of iron oxides (USPIO) in evaluating angiogenesis in the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion (pMCAO) rat model. MATERIAL AND METHODS: A total of 21 Sprague-Dawley rats were randomly divided into the pMCAO and sham operation groups. Every rat in each group underwent DSC-MRI with USPIO at 3, 5, and 7 days. DSC-MRI parameters of the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), relative mean transit time (rMTT), and relative time to peak (rTTP) were measured, calculated, and compared among the different times. Sequential correlations were analyzed among the histopathological indexes with the microvascular density (MVD) and percentage of vascular area (%VA), the serum factors with vascular endothelial growth factor (VEGF), vascular cell adhesion molecule 1 (VCAM-1), and perfusion parameters, respectively. RESULTS: The rCBV and rCBF in the peri-infarction area of pMCAO rats were significantly higher on day 7 than on day 3, whereas no significant changes in rMTT and rTTP were observed at 3, 5, and 7 days. Significantly positive correlations were found between rCBV and MVD, %VA, VEGF, VCAM-1, between rCBF and MVD, %VA, VEGF, and VCAM-1 at 3, 5, and 7 days in the pMCAO group. CONCLUSION: The rCBV and rCBF deriving from USPIO-DSC may be potentially useful for evaluating the angiogenesis of the peri-infarction zones in the subacute phase of ischemic stroke.

14.
Photodiagnosis Photodyn Ther ; 50: 104356, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368768

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a targeted treatment option for cancers that are non-responding to ordinary anticancer therapies. It involves activating a photosensitizer with a light source of a specific wavelength to destroy targeted cells and their surrounding vasculature. Aluminum phthalocyanine tetra sulfonate (AlPcS4) has gained attention as a second-generation photosensitizer for its strong absorption in the red-light region. AlPcS4 can be conjugated to magnetic iron oxide nanoparticles (IONs) to provide targeted drug delivery to the tumor cells while reducing its undesired effect on healthy tissues in other body parts. METHODS: Magnetic glutamine functionalized iron oxide nanocomposites loaded with AlPcS4 (IONs-NH2-AlPcS4) were synthesized via the co-precipitation method. The conjugate (IONs-NH2-AlPcS4) was characterized by TEM, Zeta potential, DLS, FTIR, and UV-VIS absorption spectroscopy. Furthermore, its photodynamic activity was investigated using albino mice with induced Ehrlich solid tumors. RESULTS: AlPcS4 was successfully conjugated to IONs-NH2 with a high loading efficiency of 54±2%. The synthesized conjugate exhibited a spherical shape, with 7 ± 2 nm particle size. The In vivo experiment revealed that the albino mice with induced Ehrlich solid tumor that were treated by combined PDT and magnetic targeting conjugate exhibited significant tumor regression and notably higher levels of necrotic tissue compared to the animals in other groups. CONCLUSION: PDT mediated by magnetic targeting significantly inhibited tumor growth with minimal adverse effects, indicating its great potential as a promising strategy for solid cancer treatment.

15.
Molecules ; 29(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39407513

RESUMO

The growth of the environment depends upon developing greener and ecological methods for managing pollutants and contamination from industrial wastewater, which causes significant effects on human health. The removal of these pollutants from wastewater using nanomaterials covers an ecological method that is free from expensive and secondary pollution. In this report, we developed magnetic iron nanoparticles from Chenopodium glaucum (CG), which showed excellent adsorption capacity at pH 5 for selective Hg2+ and Pb2+ metal ions among various heavy metal ions, with maximum adsorption capacities of 96.9 and 94.1%, respectively. These metals' adsorption process conforms to the Langmuir model, which suggests that monolayer adsorption transpires on CG-Fe2O3 nanoparticles. CG-Fe2O3 nanoparticles also act as an efficient and recyclable heterogeneous catalyst for one-pot synthesis of xanthene derivatives, yielding products with high yields (up to 97%) and excellent purity (crystalline form) within a short timeframe (6 min) using microwave irradiations (at 120 W).


Assuntos
Química Verde , Nanopartículas Magnéticas de Óxido de Ferro , Metais Pesados , Adsorção , Catálise , Metais Pesados/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Poluentes Químicos da Água/química , Compostos Férricos/química
16.
Molecules ; 29(19)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39407712

RESUMO

One of the major global health threats in the present era is antibiotic resistance. Biosynthesized iron oxide nanoparticles (FeNPs) can combat microbial infections and can be synthesized without harmful chemicals. In the present investigation, 16S rRNA gene sequencing was used to discover Streptomyces sp. SMGL39, an actinomycete isolate utilized to reduce ferrous sulfate heptahydrate (FeSO4.7H2O) to biosynthesize FeNPs, which were then characterized using UV-Vis, XRD, FTIR, and TEM analyses. Furthermore, in our current study, the biosynthesized FeNPs were tested for antimicrobial and antibiofilm characteristics against different Gram-negative, Gram-positive, and fungal strains. Additionally, our work examines the biosynthesized FeNPs' molecular docking and binding affinity to key enzymes, which contributed to bacterial infection cooperation via quorum sensing (QS) processes. A bright yellow to dark brown color shift indicated the production of FeNPs, which have polydispersed forms with particle sizes ranging from 80 to 180 nm and UV absorbance ranging from 220 to 280 nm. Biosynthesized FeNPs from actinobacteria significantly reduced the microbial growth of Fusarium oxysporum and L. monocytogenes, while they showed weak antimicrobial activity against P. aeruginosa and no activity against E. coli, MRSA, or Aspergillus niger. On the other hand, biosynthesized FeNPs showed strong antibiofilm activity against P. aeruginosa while showing mild and weak activity against B. subtilis and E. coli, respectively. The collaboration of biosynthesized FeNPs and key enzymes for bacterial infection exhibits hydrophobic and/or hydrogen bonding, according to this research. These results show that actinobacteria-biosynthesized FeNPs prevent biofilm development in bacteria.


Assuntos
Biofilmes , Nanopartículas Magnéticas de Óxido de Ferro , Testes de Sensibilidade Microbiana , Streptomyces , Streptomyces/metabolismo , Streptomyces/química , Biofilmes/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Fusarium/efeitos dos fármacos , Simulação por Computador
17.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408664

RESUMO

This paper presents the efficacy of a contrast agent based on H2N-Fe3O4 nanoparticles for the detection of prostate cancer in an animal model using a preclinical 9.4 T MRI system. The relaxivities r1 and r2 of the nanoparticles were 6.31 mM-1s-1 and 8.33 mM-1s-1, respectively. Nanoparticles injected in a concentration of 2 mg Fe/mL decreased the tumor-relative T1 relaxation across all animals from 100 to 76 ± 26, 85 ± 27, 89 ± 20, and 97 ± 16 12 min 1 h, 2 h, and 24 h post injection, respectively. The corresponding T1 decrease in muscle tissues was 90 ± 20, 94 ± 23, 99 ± 12, and 99 ± 14. The relative T2 changes in the tumor were 82 ± 17, 89 ± 19, 97 ± 14, and 99 ± 8 12 min, 1 h, 2 h, and 24 h post injection, respectively, while, for muscle tissues, these values were 95 ± 11, 95 ± 8, 97 ± 6, and 95 ± 10 at the corresponding time points. The differences in the relative T1 and T2 were only significant 12 min after injection (p < 0.05), although a decrease was visible at each time point, but it was statistically insignificant (p > 0.05). The results showed the potential application of H2N-Fe3O4 nanoparticles as contrast agents for enhanced prostate cancer MRI.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Animais , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Modelos Animais de Doenças , Humanos , Camundongos , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral
18.
J Drug Target ; : 1-21, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39403775

RESUMO

Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of ß amyloid (Aß) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aß plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.

19.
J Nanobiotechnology ; 22(1): 665, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468528

RESUMO

BACKGROUND: Treating mitochondrial dysfunction is a promising approach for the treatment of post-stroke cognitive impairment (PSCI). HuMSC-derived exosomes (H-Ex) have shown powerful therapeutic effects in improving mitochondrial function, but the specific effects are unclear and its brain tissue targeting needs to be further optimized. RESULTS: In this study, we found that H-Ex can improve mitochondrial dysfunction of neurons and significantly enhance the cognitive behavior performance of MCAO mice in OGD/R-induced SHSY5Y cells and MCAO mouse models. Based on this, we have developed an exosome delivery system loaded with superparamagnetic iron oxide nanoparticles (Spion-Ex) that can effectively penetrate the blood-brain barrier (BBB). The research results showed that under magnetic attraction, Spion-Ex can more effectively target the brain tissue and significantly improve mitochondrial function of neurons after stroke. Meanwhile, we further confirmed that miR-1228-5p is a key factor for H-Ex to improve mitochondrial function and cognitive behavior both in vivo and in vitro. The specific mechanism is that the increase of miR-1228-5p mediated by H-Ex can inhibit the expression of TRAF6 and activate the TRAF6-NADPH oxidase 1 (NOX1) pathway, thereby exerting protective effects against oxidative damage. More importantly, we found that under magnetic attraction, Spion-Ex exhibited excellent cognitive improvement effects by delivering miR-1228-5p. CONCLUSIONS: Our research found that H-Ex has a good therapeutic effect on PSCI by increasing the expression of miR-1228-5p in PSCI, while H-Ex loaded with Spion-Ex exhibited more excellent effects on improving mitochondrial function and cognitive impairment under magnetic attraction, which can be used as a novel strategy for the treatment of PSCI.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Mitocôndrias , Exossomos/metabolismo , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Camundongos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Nanopartículas Magnéticas de Óxido de Ferro/química , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Acidente Vascular Cerebral/terapia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/metabolismo
20.
ACS Appl Mater Interfaces ; 16(43): 58226-58240, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39420634

RESUMO

In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.


Assuntos
Indóis , Nanopartículas de Magnetita , Polímeros , Indóis/química , Polímeros/química , Nanopartículas de Magnetita/química , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli , Staphylococcus epidermidis , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA