Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Ecol ; 33(11): e17354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656619

RESUMO

Effective dispersal among plant populations is dependent on vector behaviour, landscape features and availability of adequate habitats. To capture landscape feature effects on dispersal, studies must be conducted at scales reflecting single-generation dispersal events (mesoscale). Many studies are conducted at large scales where genetic differentiation is due to dispersal occurring over multiple generations, making it difficult to interpret the effects of specific landscape features on vector behaviour. Genetic structure at the mesoscale may be determined by ecological and evolutionary processes, such as the consequences of vector behaviour on patterns of gene flow. We used chloroplast haplotypes and nuclear genome SNP surveys to identify landscape features influencing seed and pollen dispersal at a mesoscale within the Rogue River Valley in southern Oregon. We evaluated biotic and abiotic vector behaviour by contrasting two annual species with differing dispersal mechanisms; Achyrachaena mollis (Asteraceae) is a self-pollinating and anemochoric species, and Plectritis congesta (Caprifoliaceae) is biotically pollinated with barochoric seeds. Using landscape genetics methods, we identified features of the study region that conduct or restrict dispersal. We found chloroplast haplotypes were indicative of historic patterns of gene flow prior to human modification of landscapes. Seed dispersal of A. mollis was best supported by models of isolation by distance, while seed-driven gene flow of P. congesta was determined by the distribution of preserved natural spaces and quality habitat. Nuclear genetic structure was driven by both pollen and seed dispersal, and both species responded to contemporary landscape changes, such as urban and agricultural conversion, and habitat availability.


Assuntos
Fluxo Gênico , Haplótipos , Dispersão de Sementes , Haplótipos/genética , Oregon , Polimorfismo de Nucleotídeo Único/genética , Ecossistema , Genética Populacional , Pradaria , Asteraceae/genética , Dispersão Vegetal , DNA de Cloroplastos/genética , Pólen/genética , Polinização/genética , Humanos
2.
Ecol Evol ; 13(10): e10575, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780088

RESUMO

Feral pigs (Sus scrofa) are a destructive and widespread invasive pest in Australia. An understanding of feral pig movement is required to develop management strategies to control feral pigs in Australia. Because landscape structure can have a strong influence on animal movement, it is important to determine how landscape features facilitate or impede the movement of feral pigs. Consequently, we conducted a landscape genetic analysis of feral pig populations in the Herbert region of far north Queensland, Australia, to determine management units and provide recommendations to better inform feral pig population control strategies. Using microsatellite data obtained from 256 feral pig samples from 44 sites, we examined feral pig population structure at multiple spatial scales for univariate and multivariate landscape resistance surfaces to determine the optimal spatial scale and to identify which of the nine landscape features tested impede or facilitate feral pig gene flow. Only weak genetic structure was found among the 44 sampling sites, but major waterways were identified as a minor barrier to gene flow, and an isolation by distance model was supported. We also found that highways facilitated gene flow across the study area, and this suggests that they may act as movement corridors or indicate translocation of feral pigs. Additionally, incorporating a second spatial scale enhanced the ability of our landscape genetics analysis to detect the influence of landscape structure on gene flow. We identified three management units based on natural barriers to gene flow and future targeted control should be undertaken in these management units to deliver sustained reduction of feral pig populations in the Herbert region. This study demonstrates how a landscape genetic approach can be used to gain insight into the ecology of an invasive pest species and be used to develop population control strategies which utilise natural barriers to movement.

3.
PeerJ ; 11: e15927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692122

RESUMO

Urban grasslands provide numerous ecosystem services, and their maintenance should be based on naturally regenerating plant populations. However, the urban environment is challenging for preserving viable populations, mostly because of their high fragmentation and small size, which can lead to genetic drift. We examined red clover (Trifolium pratense) in a medium-size city in Central Europe to test the cityscape effect on within- and among-population genetic diversity. We used eight inter-simple sequence repeat markers to examine the genetic structure of 16 populations, each represented by eight individuals. The isolation by resistance was analysed using a least cost patch approach, focusing on gene flow via pollinators. We found great variation among T. pratense populations, with no discernible geographic pattern in genetic diversity. We linked the diversity to the long history of the city and high stochasticity of land use changes that occurred with city development. In particular, we did not find that the Odra River (ca. 100 m wide) was a strong barrier to gene transfer. However, notable isolation was present due to resistance and distance, indicating that the populations are threatened by genetic drift. Therefore, gene movement between populations should be increased by appropriate management of urban green areas. We also found that small urban grassland (UG) patches with small populations can still hold rare alleles which significantly contribute to the overall genetic variation of T. pratense in the city.


Assuntos
Essências Florais , Trifolium , Humanos , Ecossistema , Trifolium/genética , Alelos , Europa (Continente)
4.
Mol Ecol ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602959

RESUMO

The degree to which landscape genetics findings can be extrapolated to different areas of a species range is poorly understood. Here, we used a broadly distributed ectothermic lizard (Sceloporus occidentalis, Western Fence lizard) as a model species to evaluate the full role of topography, climate, vegetation, and roads on dispersal and genetic differentiation. We conducted landscape genetics analyses with a total of 119 individuals in five areas within the Sierra Nevada mountain range. Genetic distances calculated from thousands of ddRAD markers were used to optimize landscape resistance surfaces and infer the effects of landscape and topographic features on genetic connectivity. Across study areas, we found a great deal of consistency in the primary environmental gradients impacting genetic connectivity, along with some site-specific differences, and a range in the proportion of genetic variance explained by environmental factors across study sites. High-elevation colder areas were consistently found to be barriers to gene flow, as were areas of high ruggedness and slope. High temperature seasonality and high precipitation during the winter wet season also presented a substantial barrier to gene flow in a majority of study areas. The effect of other landscape variables on genetic differentiation was more idiosyncratic and depended on specific attributes at each site. Across study areas, canyon valleys were always implicated as facilitators to dispersal and key features linking populations and maintaining genetic connectivity, though the relative importance varied in different areas. We emphasize that spatial data layers are complex and multidimensional, and careful consideration of spatial data correlation structure and robust analytic frameworks will be critical to our continued understanding of spatial genetics processes.

5.
Ecol Evol ; 13(5): e10037, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153020

RESUMO

Landscape genetics is increasingly transitioning away from microsatellites, with single nucleotide polymorphisms (SNPs) providing increased resolution for detecting patterns of spatial-genetic structure. This is particularly pertinent for research in arid-zone mammals due to challenges associated with unique life history traits, such as boom-bust population dynamics and long-distance dispersal capacities. Here, we provide a case study comparing SNPs versus microsatellites for testing three explicit landscape genetic hypotheses (isolation-by-distance, isolation-by-barrier, and isolation-by-resistance) in a suite of small, arid-zone mammals in the Pilbara region of Western Australia. Using clustering algorithms, Mantel tests, and linear mixed effects models, we compare functional connectivity between genetic marker types and across species, including one marsupial, Ningaui timealeyi, and two native rodents, Pseudomys chapmani and P. hermannsburgensis. SNPs resolved subtle genetic structuring not detected by microsatellites, particularly for N. timealeyi where two genetic clusters were identified. Furthermore, stronger signatures of isolation-by-distance and isolation-by-resistance were detected when using SNPs, and model selection based on SNPs tended to identify more complex resistance surfaces (i.e., composite surfaces of multiple environmental layers) in the best-performing models. While we found limited evidence for physical barriers to dispersal across the Pilbara for all species, we found that topography, substrate, and soil moisture were the main environmental drivers shaping functional connectivity. Our study demonstrates that new analytical and genetic tools can provide novel ecological insights into arid landscapes, with potential application to conservation management through identifying dispersal corridors to mediate the impacts of ongoing habitat fragmentation in the region.

6.
Zoolog Sci ; 40(3): 189-196, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256565

RESUMO

As a contribution to improving management of the Japanese wild boar (Sus scrofa leucomystax), which has recently expanded its range and is having some negative effects on the ecosystem, we conducted a landscape genetic study using individual-based genetic analysis and multiple landscape elements to elucidate its dispersal patterns in the early stage of its expansion. Microsatellite DNA analysis of Japanese wild boars in the Hokuriku region of Japan revealed the existence of two ancestral genetic clusters, that they had migrated via different pathways, and that they were inadequately admixed. We also inferred the most suitable habitats for Japanese wild boar using MaxEnt and concluded that lower elevation and snowfall may favor the occurrence of wild boar individuals. Landscape genetic analysis indicated regional differences in Japanese wild boar dispersal patterns, according to the spatial heterogeneity of genetic features and landscape elements. On the western side of the study area, where individuals with a high frequency of one of two ancestral clusters were more abundant, significant effects of isolation by distance and resistance due to the above two landscape factors were detected, suggesting unidirectional dispersion influenced by the alpine landscape. In contrast, on the eastern side, there was indication of resistance to dispersal of individuals predominantly possessing another ancestral cluster, suggesting the influence of irregularly arranged suitable habitats due to the complexity of the mountainous terrain. Based on our findings, we conclude that Japanese wild boar dispersal patterns may be influenced by landscape elements, such as alpine mountains.


Assuntos
Ecossistema , Sus scrofa , Animais , DNA Mitocondrial/genética , Japão , Sus scrofa/genética , Suínos/genética
7.
Mol Ecol ; 32(13): 3450-3470, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009890

RESUMO

Genetic differentiation between and within natural populations is the result of the joint effects of neutral and adaptative processes. In addition, the spatial arrangement of the landscape promotes connectivity or creates barriers to gene flow, directly affecting speciation processes. In this study, we carried out a landscape genomics analysis using NextRAD data from a montane forest specialist bird complex, the Mesoamerican Chestnut-capped/Green-striped Brushfinch of the genus Arremon. Specifically, we examined population genomic structure using different assignment methods and genomic differentiation and diversity, and we tested alternative genetic isolation hypotheses at the individual level (e.g., isolation by barrier, IBB; isolation by environment, IBE; isolation by resistance, IBR). We found well-delimited genomic structuring (K = 5) across Mesoamerican montane forests in the studied group. Individual-level genetic distances among major montane ranges were mainly explained by IBR hypotheses in this sedentary Neotropical taxon. Our results uncover genetic distances/differentiation and patterns of gene flow in allopatric species that support the role of tropical mountains as spatial landscape drivers of biodiversity. IBR clearly supports a pattern of conserved niche-tracking of suitable habitat conditions and topographic complexity throughout glacial-interglacial dynamics.


Assuntos
Genética Populacional , Passeriformes , Animais , Variação Genética/genética , Ecossistema , Florestas , Passeriformes/genética
8.
Genes (Basel) ; 14(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981017

RESUMO

Dispersal is a fundamental aspect of primates' lives and influences both population and community structuring, as well as species evolution. Primates disperse within an environmental context, where both local and intervening environmental factors affect all phases of dispersal. To date, research has primarily focused on how the intervening landscape influences primate dispersal, with few assessing the effects of local habitat characteristics. Here, we use a landscape genetics approach to examine between- and within-site environmental drivers of short-range black-and-white ruffed lemur (Varecia variegata) dispersal in the Ranomafana region of southeastern Madagascar. We identified the most influential drivers of short-range ruffed lemur dispersal as being between-site terrain ruggedness and canopy height, more so than any within-site habitat characteristic evaluated. Our results suggest that ruffed lemurs disperse through the least rugged terrain that enables them to remain within their preferred tall-canopied forest habitat. Furthermore, we noted a scale-dependent environmental effect when comparing our results to earlier landscape characteristics identified as driving long-range ruffed lemur dispersal. We found that forest structure drives short-range dispersal events, whereas forest presence facilitates long-range dispersal and multigenerational gene flow. Together, our findings highlight the importance of retaining high-quality forests and forest continuity to facilitate dispersal and maintain functional connectivity in ruffed lemurs.


Assuntos
Lemur , Lemuridae , Animais , Lemur/genética , Lemuridae/genética , Florestas , Ecossistema
9.
Mol Ecol Resour ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847356

RESUMO

Understanding landscape connectivity has become a global priority for mitigating the impact of landscape fragmentation on biodiversity. Connectivity methods that use link-based methods traditionally rely on relating pairwise genetic distance between individuals or demes to their landscape distance (e.g., geographic distance, cost distance). In this study, we present an alternative to conventional statistical approaches to refine cost surfaces by adapting the gradient forest approach to produce a resistance surface. Used in community ecology, gradient forest is an extension of random forest, and has been implemented in genomic studies to model species genetic offset under future climatic scenarios. By design, this adapted method, resGF, has the ability to handle multiple environmental predicators and is not subjected to traditional assumptions of linear models such as independence, normality and linearity. Using genetic simulations, resistance Gradient Forest (resGF) performance was compared to other published methods (maximum likelihood population effects model, random forest-based least-cost transect analysis and species distribution model). In univariate scenarios, resGF was able to distinguish the true surface contributing to genetic diversity among competing surfaces better than the compared methods. In multivariate scenarios, the gradient forest approach performed similarly to the other random forest-based approach using least-cost transect analysis but outperformed MLPE-based methods. Additionally, two worked examples are provided using two previously published data sets. This machine learning algorithm has the potential to improve our understanding of landscape connectivity and inform long-term biodiversity conservation strategies.

10.
Mol Ecol ; 32(8): 2055-2070, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36695049

RESUMO

The field of biogeography unites landscape genetics and phylogeography under a common conceptual framework. Landscape genetics traditionally focuses on recent-time, population-based, spatial genetics processes at small geographical scales, while phylogeography typically investigates deep past, lineage- and species-based processes at large geographical scales. Here, we evaluate the link between landscape genetics and phylogeographical methods using the western fence lizard (Sceloporus occidentalis) as a model species. First, we conducted replicated landscape genetics studies across several geographical scales to investigate how population genetics inferences change depending on the spatial extent of the study area. Then, we carried out a phylogeographical study of population structure at two evolutionary scales informed by inferences derived from landscape genetics results to identify concordance and conflict between these sets of methods. We found significant concordance in landscape genetics processes at all but the largest geographical scale. Phylogeographical results indicate major clades are restricted to distinct river drainages or distinct hydrological regions. At a more recent timescale, we find minor clades are restricted to single river canyons in the majority of cases, while the remainder of river canyons include samples from at most two clades. Overall, the broad-scale pattern implicating stream and river valleys as key features linking populations in the landscape genetics results, and high degree of clade specificity within major topographic subdivisions in the phylogeographical results, is consistent. As landscape genetics and phylogeography share many of the same objectives, synthesizing theory, models and methods between these fields will help bring about a better understanding of ecological and evolutionary processes structuring genetic variation across space and time.


Assuntos
Evolução Biológica , Genética Populacional , Filogeografia , Rios , Variação Genética/genética , Filogenia
11.
Mol Ecol ; 32(16): 4515-4530, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35593303

RESUMO

Ecologically distinct species may respond to landscape changes in different ways. In addition to basic ecological data, the extent of the geographic range has been successfully used as an indicator of species sensitivity to anthropogenic landscapes, with widespread species usually found to be less sensitive compared to range-restricted species. In this study, we investigate connectivity patterns of two closely related but ecologically distinct newt species - the range-restricted, Lissotriton montandoni and the widespread, L. vulgaris - using genomic data, a highly replicated setting (six geographic regions per species), and tools from landscape genetics. Our results show the importance of forest for connectivity in both species, but at the same time suggest differential use of forested habitat, with L. montandoni and L. vulgaris showing the highest connectivity at forest-core and forest-edges, respectively. Anthropogenic landscapes (i.e., higher crop- or urban-cover) increased resistance in both species, but the effect was one to three orders of magnitude stronger in L. montandoni than in L. vulgaris. This result is consistent with a view of L. vulgaris as an ecological generalist. Even so, currently, the negative impact of anthropogenic landscapes is mainly seen in connectivity among L. vulgaris populations, which show significantly stronger isolation and lower effective sizes relative to L. montandoni. Overall, this study emphasizes how habitat destruction is compromising genetic connectivity not only in endemic, range-restricted species of conservation concern but also in widespread generalist species, despite their comparatively lower sensitivity to anthropogenic landscape changes.


Assuntos
Ecossistema , Florestas , Animais , Salamandridae/genética
12.
Ecol Evol ; 12(1): e8460, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127012

RESUMO

In modern wildlife ecology, spatial population genetic methods are becoming increasingly applied. Especially for animal species in fragmented landscapes, preservation of gene flow becomes a high priority target in order to restore genetic diversity and prevent local extinction. Within Central Europe, the Alps represent the core distribution area of the black grouse, Lyrurus tetrix. At its easternmost Alpine range, events of subpopulation extinction have already been documented in the past decades. Molecular data combined with spatial analyses can help to assess landscape effects on genetic variation and therefore can be informative for conservation management. Here, we addressed whether the genetic pattern of the easternmost Alpine black grouse metapopulation system is driven by isolation by distance or isolation by resistance. Correlative ecological niche modeling was used to assess geographic distances and landscape resistances. We then applied regression-based approaches combined with population genetic analyses based on microsatellite data to disentangle effects of isolation by distance and isolation by resistance among individuals and subpopulations. Although population genetic analyses revealed overall low levels of genetic differentiation, the ecological niche modeling showed subpopulations to be clearly delimited by habitat structures. Spatial genetic variation could be attributed to effects of isolation by distance among individuals and isolation by resistance among subpopulations, yet unknown effects might factor in. The easternmost subpopulation was the most differentiated, and at the same time, immigration was not detected; hence, its long-term survival might be threatened. Our study provides valuable insights into the spatial genetic variation of this small-scale metapopulation system of Alpine black grouse.

13.
J Hered ; 112(7): 646-662, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34453543

RESUMO

The Atlantic spotted dolphin (Stenella frontalis) is endemic to tropical, subtropical, and warm temperate waters of the Atlantic Ocean. Throughout its distribution, both geographic distance and environmental variation may contribute to population structure of the species. In this study, we follow a seascape genetics approach to investigate population differentiation of Atlantic spotted dolphins based on a large worldwide dataset and the relationship with marine environmental variables. The results revealed that the Atlantic spotted dolphin exhibits population genetic structure across its distribution based on mitochondrial DNA control region (mtDNA-CR) data. Analyses based on the contemporary landscape suggested, at both the individual and population level, that the population genetic structure is consistent with the isolation-by-distance model. However, because geography and environmental matrices were correlated, and because in some, but not all analyses, we found a significant effect for the environment, we cannot rule out the addition contribution of environmental factors in structuring genetic variation. Future analyses based on nuclear data are needed to evaluate whether local processes, such as social structure and some level of philopatry within populations, may be contributing to the associations among genetic structure, geographic, and environmental distance.


Assuntos
Golfinhos , Stenella , Animais , Oceano Atlântico , DNA Mitocondrial/genética , Humanos , Estrutura Social , Stenella/genética
14.
Evol Appl ; 14(1): 136-149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33519961

RESUMO

Human activity continues to impact global ecosystems, often by altering the habitat suitability, persistence, and movement of native species. It is thus critical to examine the population genetic structure of key ecosystemservice providers across human-altered landscapes to provide insight into the forces that limit wildlife persistence and movement across multiple spatial scales. While some studies have documented declines of bee pollinators as a result of human-mediated habitat alteration, others suggest that some bee species may benefit from altered land use due to increased food or nesting resource availability; however, detailed population and dispersal studies have been lacking. We investigated the population genetic structure of the Eastern carpenter bee, Xylocopa virginica, across 14 sites spanning more than 450 km, including dense urban areas and intensive agricultural habitat. X. virginica is a large bee which constructs nests in natural and human-associated wooden substrates, and is hypothesized to disperse broadly across urbanizing areas. Using 10 microsatellite loci, we detected significant genetic isolation by geographic distance and significant isolation by land use, where urban and cultivated landscapes were most conducive to gene flow. This is one of the first population genetic analyses to provide evidence of enhanced insect dispersal in human-altered areas as compared to semi-natural landscapes. We found moderate levels of regional-scale population structure across the study system (G'ST = 0.146) and substantial co-ancestry between the sampling regions, where co-ancestry patterns align with major human transportation corridors, suggesting that human-mediated movement may be influencing regional dispersal processes. Additionally, we found a signature of strong site-level philopatry where our analyses revealed significant levels of high genetic relatedness at very fine scales (<1 km), surprising given X. virginica's large body size. These results provide unique genetic evidence that insects can simultaneously exhibit substantial regional dispersal as well as high local nesting fidelity in landscapes dominated by human activity.

15.
Mol Ecol ; 30(3): 639-655, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245827

RESUMO

Landscape heterogeneity can shape genetic structure and functional connectivity of populations. When this heterogeneity imposes variable costs of moving across the landscape, populations can be structured according to a pattern of "isolation by resistance" (IBR). At the same time, divergent local environmental filters can limit gene flow, creating an alternative pattern of "isolation by environment" (IBE). Here, we evaluate IBR and IBE in the insect-pollinated, biennial plant Sabatia angularis (L.) Pursh (Gentianaceae) across serpentine grasslands in the fragmented landscape of SE Pennsylvania, USA using ~4500 neutral SNP loci. Specifically, we test the extent to which radical alteration of the landscape matrix by humans has fundamentally altered the cost of movement, imprinting a pattern of IBR dictated by land use type and intensity, and the potential for IBE in relation to a gradient of heavy metal concentrations found in serpentine soil. We reveal a strong signal of IBR and a weak signal of IBE across sites, indicating the greater importance of the landscape matrix in shaping genetic structure of S. angularis populations in the study region. Based on Circuitscape and least cost path approaches, we find that both low- and high-intensity urbanization resist gene flow by orders of magnitude greater than "natural" habitats, although resistance to low-intensity urbanization weakens at larger spatial scales. While cropland presents a substantially lower barrier than urban development, cumulative human land use surrounding populations predicts within-population genetic diversity and inbreeding in S. angularis. Our results emphasize the role of forest buffers and corridors in facilitating gene flow between serpentine grassland patches and averting local extinction of plant populations.


Assuntos
Fluxo Gênico , Gentianaceae/genética , Pradaria , Ecossistema , Estruturas Genéticas , Pennsylvania
16.
Mol Ecol ; 29(20): 3889-3906, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810893

RESUMO

Previous work in landscape genetics suggests that geographic isolation is of greater importance to genetic divergence than variation in environmental conditions. This is intuitive when configurations of suitable habitat are a dominant factor limiting dispersal and gene flow, but has not been thoroughly examined for habitat specialists with strong dispersal capability. Here, we evaluate the effects of geographic and environmental isolation on genetic divergence for a vagile invertebrate with high habitat specificity and a discrete dispersal life stage: Dod's Old World swallowtail butterfly, Papilio machaon dodi. In Canada, P. m. dodi are generally restricted to eroding habitat along major river valleys where their larval host plant occurs. A series of causal and linear mixed effects models indicate that divergence of genome-wide single nucleotide polymorphisms is best explained by a combination of environmental isolation (variation in summer temperatures) and geographic isolation (Euclidean distance). Interestingly, least-cost path and circuit distances through a resistance surface parameterized as the inverse of habitat suitability were not supported. This suggests that, although habitat associations of many butterflies are specific due to reproductive requirements, habitat suitability and landscape permeability are not equivalent concepts due to considerable adult vagility. We infer that divergent selection related to variation in summer temperatures has produced two genetic clusters within P. m. dodi, differing in voltinism and diapause propensity. Within the next century, temperatures are predicted to rise by amounts greater than the present-day difference between regions of the genetic clusters, potentially affecting the persistence of the northern cluster under continued climate change.


Assuntos
Borboletas , Fluxo Gênico , Animais , Borboletas/genética , Canadá , Ecossistema , Variação Genética , Especialização
17.
Front Genet ; 11: 307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296465

RESUMO

Rapid progression of human socio-economic activities has altered the structure and function of natural landscapes. Species that rely on multiple, complementary habitat types (i.e., landscape complementation) to complete their life cycle may be especially at risk. However, such landscape complementation has received little attention in the context of landscape connectivity modeling. A previous study on flower longhorn beetles (Cerambycidae: Lepturinae) integrated landscape complementation into a continuous habitat suitability 'surface', which was then used to quantify landscape connectivity between pairs of sampling sites using gradient-surface metrics. This connectivity model was validated with molecular genetic data collected for the banded longhorn beetle (Typocerus v. velutinus) in Indiana, United States. However, this approach has not been compared to alternative models in a landscape genetics context. Here, we used a discrete land use/land cover map to calculate landscape metrics related to landscape complementation based on a patch mosaic model (PMM) as an alternative to the previously published, continuous habitat suitability model (HSM). We evaluated the HSM surface with gradient surface metrics (GSM) and with two resistance-based models (RBM) based on least cost path (LCP) and commute distance (CD), in addition to an isolation-by-distance (IBD) model based on Euclidean distance. We compared the ability of these competing models of connectivity to explain pairwise genetic distances (R ST) previously calculated from ten microsatellite genotypes of 454 beetles collected from 17 sites across Indiana, United States. Model selection with maximum likelihood population effects (MLPE) models found that GSM were most effective at explaining pairwise genetic distances as a proxy for gene flow across the landscape, followed by the landscape metrics calculated from the PMM, whereas the LCP model performed worse than both the CD and the isolation by distance model. We argue that the analysis of a continuous HSM with GSM might perform better because of their combined ability to effectively represent and quantify the continuous degree of landscape complementation (i.e., availability of complementary habitats in vicinity) found at and in-between sites, on which these beetles depend. Our findings may inform future studies that seek to model habitat connectivity in complex heterogeneous landscapes as natural habitats continue to become more fragmented in the Anthropocene.

18.
Am J Bot ; 107(3): 413-422, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090323

RESUMO

PREMISE: Seed dispersal allows plants to colonize new sites and contributes to gene flow among populations. Despite its fundamental importance to ecological and evolutionary processes, our understanding of seed dispersal is limited due to the difficulty of directly observing dispersal events. This is particularly true for the majority of plant species that are considered to have gravity as their primary dispersal mechanism. The potential for long-distance movement of gravity-dispersed seeds by secondary dispersal vectors is rarely evaluated. METHODS: We employ whole-genome assays of maternally inherited cpDNA in Plagiobothrys nothofulvus to resolve patterns of genetic variation due to effective (realized) seed dispersal within a 16 hectare prairie that is characterized by a mosaic of habitat types. We evaluate the effects of microgeographic landscape features extracted from micro-UAV aerial surveys on patterns of seed dispersal using landscape genetics methods. RESULTS: We found evidence of high resistance to seed-mediated gene flow (effective dispersal) within patches of Plagiobothrys nothofulvus, and strong genetic structure over distances of less than 20 m. Geographic distance was a poor predictor of dispersal distance, while landscape features had stronger influences on patterns of dispersal (distance and direction of seed movement). Patterns of dispersal were best predicted by the combined distribution of flower patches, habitat type, and the network of vole runways, with the latter explaining the largest proportion of variation in the model. CONCLUSIONS: Our results suggest that primary dispersal occurs mostly within microhabitats and infrequent secondary dispersal may occur over longer distances due to the activity of small mammals and other vertebrates.


Assuntos
Dispersão de Sementes , Animais , Arvicolinae , Ecossistema , Fluxo Gênico , Sementes
19.
Mol Ecol Resour ; 20(1): 97-113, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31484210

RESUMO

The importance of assessing spatial data at multiple scales when modelling species-environment relationships has been highlighted by several empirical studies. However, no landscape genetics studies have optimized landscape resistance surfaces by evaluating relevant spatial predictors at multiple spatial scales. Here, we model multiscale/layer landscape resistance surfaces to estimate resistance to inferred gene flow for two vernal pool breeding salamander species, spotted (Ambystoma maculatum) and marbled (A. opacum) salamanders. Multiscale resistance surface models outperformed spatial layers modelled at their original spatial scale. A resistance surface with forest land cover at a 500-m Gaussian kernel bandwidth and normalized vegetation index at a 100-m Gaussian kernel bandwidth was the top optimized resistance surface for A. maculatum, while a resistance surface with traffic rate and topographic curvature, both at a 500-m Gaussian kernel bandwidth, was the top optimized resistance surface for A. opacum. Species-specific resistant kernels were fit at all vernal pools in our study area with the optimized multiscale/layer resistance surface controlling kernel spread. Vernal pools were then evaluated and scored based on surrounding upland habitat (local score) and connectivity with other vernal pools on the landscape, with resistant kernels driving vernal pool connectivity scores. As expected, vernal pools that scored highest were in areas within forested habitats and with high vernal pool densities and low species-specific landscape resistance. Our findings highlight the success of using a novel analytical approach in a multiscale framework with applications beyond vernal pool amphibian conservation.


Assuntos
Ambystoma/genética , Ambystoma/classificação , Ambystoma/fisiologia , Distribuição Animal , Animais , Cruzamento , Ecossistema , Feminino , Florestas , Fluxo Gênico , Masculino , Especificidade da Espécie
20.
Front Genet ; 10: 1011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798621

RESUMO

Although habitat loss has large, consistently negative effects on biodiversity, its genetic consequences are not yet fully understood. This is because measuring the genetic consequences of habitat loss requires accounting for major methodological limitations like the confounding effect of habitat fragmentation, historical processes underpinning genetic differentiation, time-lags between the onset of disturbances and genetic outcomes, and the need for large numbers of samples, genetic markers, and replicated landscapes to ensure sufficient statistical power. In this paper we overcame all these challenges to assess the genetic consequences of extreme habitat loss driven by mining in two herbs endemic to Amazonian savannas. Relying on genotyping-by-sequencing of hundreds of individuals collected across two mining landscapes, we identified thousands of neutral and independent single-nucleotide polymorphisms (SNPs) in each species and used these to evaluate population structure, genetic diversity, and gene flow. Since open-pit mining in our study region rarely involves habitat fragmentation, we were able to assess the independent effect of habitat loss. We also accounted for the underlying population structure when assessing landscape effects on genetic diversity and gene flow, examined the sensitivity of our analyses to the resolution of spatial data, and used annual species and cross-year analyses to minimize and quantify possible time-lag effects. We found that both species are remarkably resilient, as genetic diversity and gene flow patterns were unaffected by habitat loss. Whereas historical habitat amount was found to influence inbreeding; heterozygosity and inbreeding were not affected by habitat loss in either species, and gene flow was mainly influenced by geographic distance, pre-mining land cover, and local climate. Our study demonstrates that it is not possible to generalize about the genetic consequences of habitat loss, and implies that future conservation efforts need to consider species-specific genetic information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA