Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Rep ; 14(1): 20965, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251612

RESUMO

Single-layer isophorone diisocyanate (IPDI) are one of the most popular self-healing microcapsules but suffers from low shell strength, poor heat resistance, stability and aging properties. In this paper, IPDI microcapsules were encapsulated into double-layer phenolic (PF)/polyurethane (PU) by a two-step process involving interfacial polymerization and in-situ polymerization. The prepared microcapsule composites were comprehensively characterized for their physical and chemical properties using optical microanalysis, scanning electron microscope, Fourier transform infrared spectroscopy, thermal gravimetric analysis and depth-sensing indentation analysis. Compared with the single-layer PU-IPDI microcapsule counterpart, the mechanical performance, thermal resistance, aging property and environmental stability of double-layer PF/PU-IPDI microcapsules were significantly improved. The epoxy coating was enhanced with the incorporation of 10 wt.% PF/PU-IPDI microcapsules, whose self-healing performance was evaluated by scratch corrosion test. The results demonstrated successful repair of coating scratches, along with the absence of corrosion on the coated steel substrate soaked in a 10 wt.% NaCl solution for 7 days. By comparing the tensile strength of epoxy coating before and after crack formation, it could be found that the self-healing efficiency was 57.9% when loaded with 10 wt.% of PF/PU-IPDI microcapsules in coating. This study highlights that the rational design of double-layer microcapsules integrated into the epoxy coating matrix could provide excellent anti-corrosion and self-healing properties.

2.
Contact Dermatitis ; 91(3): 212-221, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38956835

RESUMO

BACKGROUND: Isocyanates are used as starting materials of polyurethane (PU) products. They are relatively important occupational skin sensitizers. OBJECTIVES: To analyse results of a large isocyanate patch test series of 19 isocyanate test substances and 4,4'-diaminodiphenylmethane (MDA), a marker of 4,4'-diphenylmethane diisocyanate (MDI) hypersensitivity. METHODS: Test files were screened for positive reactions in the isocyanate series. Patients with positive reactions were analysed for occupation, exposure and diagnosis. RESULTS: In 2010-2019, 53 patients had positive reactions in the series (16% of 338 patients tested). MDA, the well-established screening substance for MDI allergy, was positive in 30 patients, an in-house monomeric MDI test substance in 23 patients and 3 different polymeric MDI test substances in 19-21 patients. We diagnosed 16 cases of occupational allergic contact dermatitis (OACD) from MDI including 3 pipe reliners. Hexamethylene-1,6-diisocyanate (HDI) oligomers in paint hardeners caused 5 cases of OACD, more cases than 2,4-toluene diisocyanate (TDI; n = 3) and isophorone diisocyanate (IPDI; n = 1) put together. CONCLUSIONS: In contrast to previous studies, polymeric MDI test substances were not superior to a monomeric MDI. Pipe reliners may get sensitised not only by epoxy products and acrylates but also by MDI in hardeners of PU pipe coatings. HDI oligomers were the second most important causes of OACD after MDI.


Assuntos
Dermatite Alérgica de Contato , Dermatite Ocupacional , Isocianatos , Testes do Emplastro , Humanos , Isocianatos/efeitos adversos , Testes do Emplastro/métodos , Dermatite Ocupacional/diagnóstico , Dermatite Ocupacional/etiologia , Dermatite Alérgica de Contato/diagnóstico , Dermatite Alérgica de Contato/etiologia , Feminino , Masculino , Adulto , Poliuretanos/efeitos adversos , Pessoa de Meia-Idade , Compostos de Anilina
3.
Toxicol Ind Health ; 40(8): 441-464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748851

RESUMO

The water extractability and acute aquatic toxicity of seven aliphatic diisocyanate-based prepolymer substances were investigated to determine if lesser reactivity of the aliphatic isocyanate groups, as well as increased ionization potential of the expected (aliphatic amine-terminated) polymeric hydrolysis products, would influence their aquatic behavior compared to that of previously investigated aromatic diisocyanate-based prepolymers. At loading rates of 100 and 1,000 mg/L, only the substances having log Kow ≤9 exhibited more than 1% extractability in water, and a maximum of 66% water extractability was determined for a prepolymer having log Kow = 2.2. For the more hydrophobic prepolymer substances (log Kow values from 18-37), water extractability was negligible. High-resolution mass spectrometric analyses were performed on the water-accommodated fractions (WAF) of the prepolymers, which indicated the occurrence of primary aliphatic amine-terminated polymer species having backbones and functional group equivalent weights aligned to those of the parent prepolymers. Measurements of reduced surface tension and presence of suspended micelles in the WAFs further supported the occurrence of these surface-active cationic polymer species as hydrolysis products of the prepolymers. Despite these characteristics, the water-extractable hydrolysis products were practically non-toxic to Daphnia magna. All of the substances tested exhibited 48-h EL50 values of >1,000 mg/L, with one exception of EL50 = 157 mg/L. The results from this investigation support a grouping of the aliphatic diisocyanate-based prepolymers as a class of water-reactive polymer substances having predictable aquatic exposure and a uniformly low hazard potential, consistent with that previously demonstrated for the aromatic diisocyanate-based prepolymers.


Assuntos
Isocianatos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Isocianatos/química , Isocianatos/toxicidade , Polímeros/química , Polímeros/toxicidade , Daphnia/efeitos dos fármacos , Relação Estrutura-Atividade , Poliuretanos/química , Poliuretanos/toxicidade
4.
Polymers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257069

RESUMO

The encapsulation of active components is currently used as common methodology for the insertion of additional functions like self-healing properties on a polymeric matrix. Among the different approaches, polyurea microcapsules are used in different applications. The design of polyurea microcapsules (MCs) containing active diisocyanate compounds, namely isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HDI), is explored in the present work. The polyurea shell of MCs is formed through the interfacial polymerization of oil-in-water emulsions between the highly active methylene diphenyl diisocyanate (MDI) and diethylenetriamine (DETA), while the cores of MCs contain, apart from IPDI or HDI, a liquid Novolac resin. The hydroxyl functionalities of the resin were either unprotected (Novolac resin), partially protected (Benzyl Novolac resin) or fully protected (Acetyl Novolac resin). It has been found that the formation of MCs is controlled by the MDI/DETA ratio, while the shape and size of MCs depends on the homogenization rate applied for emulsification. The encapsulated active compound, as determined through the titration of isocyanate (NCO) groups, was found to decrease with the hydroxyl functionality content of the Novolac resin used, indicating a reaction between NCO and the hydroxyl groups. Through the thorough investigation of the organic phase, the rapid reaction (within a few minutes) of MDI with the unprotected Novolac resin was revealed, while a gradual decrease in the NCO groups (within two months) has been observed through the evolution of the Attenuated Total Reflectance-Fourier-Transform Infrared (ATR-FTIR) spectroscopy and titration, due to the reaction of these groups with the hydroxyl functionalities of unprotected and partially protected Novolac resin. Over longer times (above two months), the reaction of the remaining NCO groups with humidity was evidenced, especially when the fully protected Acetyl Novolac resin was used. HDI was found to be more susceptible to reactions, as compared with IPDI.

5.
Gels ; 9(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37754436

RESUMO

Polymer networks based on cyclodextrin and polyethylene glycol were prepared through polyaddition crosslinking using isophorone diisocyanate. The envisaged material properties are the hydrophilic character, specific to PEG and cyclodextrins, and the capacity to encapsulate guest molecules in the cyclodextrin cavity through physical interactions. The cyclodextrin was custom-modified with oligocaprolactone to endow the crosslinked material with a hydrolytically degradable character. SEM, DTG, and FTIR characterization methods have confirmed the morphology and structure of the prepared hydrogels. The influence of the crosslinking reaction feed was investigated through dynamic rheology. Further, thermal water swelling and hydrolytic degradation in basic conditions revealed the connectivity of the polymer network and the particular influence of the cyclodextrin amount in the crosslinking reaction feed on the material properties. Also, levofloxacin was employed as a model drug to investigate the drug loading and release capacity of the prepared hydrogels.

6.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771965

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable flexible, and tough polymer is herein used, for the first time, to encapsulate and protect isocyanate derivatives. Isocyanates are essential building blocks widely employed in the chemical industry for the production of high-performing materials. Microencapsulation of isocyanates eliminates the risks associated with their direct handling and protects them from moisture. In light of this, and having in mind eco-innovative products and sustainability, we present a straightforward process to encapsulate isophorone diisocyanate (IPDI) using this biodegradable polymer. Spherical and core-shell microcapsules (MCs) were produced by an emulsion system combined with the solvent evaporation method. The MCs present a regular surface, without holes or cracks, with a thin shell and high isocyanate loadings, up to 79 wt%. Additionally, the MCs showed very good isocyanate protection if not dispersed in organic or aqueous solutions. Effects of various process parameters were systematically studied, showing that a higher stirring speed (1000 rpm) and emulsifier amount (2.5 g), as well as a smaller PBAT amount (1.60 g), lead to smaller MCs and narrower size distribution.

7.
Materials (Basel) ; 16(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36676558

RESUMO

The reaction of diols with isocyanates, leading to mono-functional and di-functional prepolymers may be investigated using various characterization methods which show the overall conversion of isocyanate monomers. On the other hand, matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) polymer characterization can be employed to identify the monomer units, the end-group functionalities, molecular weight averages, and to determine the copolymer sequence. Herein, we focus on prepolymer synthesis using isophorone diisocyanate (IPDI), a widely used diisocyanate for prepolymers preparation, especially in waterborne polyurethane materials. Thus, the reaction between polyethylene glycol diol and IPDI was in-depth investigated by mass spectrometry to determine the influence of the reaction parameters on the prepolymer's structure. The relative content of the different functional oligomer species at given reaction times was determined in the reaction mixture. More specifically, the offline analysis revealed the influence of reaction parameters such as reaction temperature, the concentration of reactants, and the amount of dibutyltin dilaurate catalyst. The established MALDI MS analysis involved measurements of samples, first, directly collected from the reaction mixture and secondly, following derivatization with methanol. The obtained results revealed the effects of reaction parameters on the functionalization reaction with isocyanates, allowing to achieve a better reaction control.

8.
Carbohydr Polym ; 302: 120373, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604051

RESUMO

In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.g., emulsifiable concentrate, EC), LC@O-CMCS/PU showed better leaf-surface adhesion. On the dried pesticide-applied surfaces, the acute contact toxicity of LC@O-CMCS/PU to Harmonia axyridis (H. axyridis) was nearly 20 times lower than that of LC EC. Due to the slow-releasing property of LC@O-CMCS/PU, only 16.38 % of LC was released at 48 h in dew and effectively reduced the toxicity of dew. On the pesticide-applied leaves with dew, exposure to the LC (EC) caused 86.66 % mortality of H. axyridis larvae significantly higher than the LC@O-CMCS/PU, which was only 16.66 % lethality. Additionally, quantitative analysis demonstrated 11.33 mg/kg of λ-cyhalothrin in the dew on LC@O-CMCS/PU lower than LC (EC) with 4.54 mg/kg. In summary, LC@O-CMCS/PU effectively improves the safety of λ-cyhalothrin to H. axyridis and has great potential to be used in pest control combining natural enemies and chemical pesticides.


Assuntos
Besouros , Praguicidas , Piretrinas , Animais , Piretrinas/toxicidade , Praguicidas/toxicidade , Controle de Pragas , Concentração de Íons de Hidrogênio
9.
Gels ; 8(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35735692

RESUMO

The influence of the hydroxyl groups (OH) type on the polyaddition processes of isocyanates represents a critical approach for the design of multicomponent polyurethane systems. Herein, to prove the effect of hydroxyl nature on both the isocyanate-OH polyaddition reactions and the structure/properties of the resulting networks, two structurally different cyclodextrins in terms of the primary and secondary groups' ratio were analyzed, namely native ß-cyclodextrin (CD) and its derivative esterified to the primary hydroxyl groups with oligolactide chains (CDLA). Thus, polyurethane hydrogels were prepared via the polyaddition of CD or CDLA to isophorone diisocyanate polyethylene glycol-based prepolymers (PEG-(NCO)2). The degradable character of the materials was induced by intercalating oligolactide short sequences into the polymer chains composing the polymer network. In order to establish the influence of the OH type, the synthesis of polyurethane hydrogels was analyzed by a rheological investigation of the overall system reactivity. Materials properties such as swelling behavior, thermal properties and hydrolytic degradation were influenced by the reaction feed. Specifically, the presence of primary OH groups leads to more compact networks with similar water uptake, disregarding the CD content, while the predominance of secondary OH groups together with the presence of oligolactide spacers leads to the fine tuning of the water swelling properties.

10.
Toxicol Ind Health ; 38(9): 495-499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35531890

RESUMO

By way of introduction to the special issue on diisocyanates and their corresponding diamines, this brief overview presents, for the most commonly used diisocyanate monomers, a selection of physical-chemical properties that are relevant to exposure in the workplace and in the general environment, as well as a concise overview of diisocyanate reactions and some of their toxicological implications.


Assuntos
Isocianatos , Local de Trabalho , Isocianatos/toxicidade
12.
Polymers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451305

RESUMO

Using carbon dioxide-based poly(propylene ether carbonate) diol (PPCD), isophorone diisocyanate (IPDI), dimethylolbutyric acid (DMBA), ferric chloride (FeCl3), and ethylene glycol (EG) as the main raw materials, a novel thermoplastic polyurethane (TPU) is prepared through coordination of FeCl3 and DMBA to obtain TPU containing coordination enhancement directly. The Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, UV-Vis spectroscopy, tensile testing, dynamic mechanical analysis, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis were explored to characterize chemical structures and mechanical properties of as-prepared TPU. With the increasing addition of FeCl3, the tensile strength and modulus of TPU increase. Although the elongation at break decreases, it still maintains a high level. Dynamic mechanical analysis shows that the glass-transition temperature moves to a high temperature gradually along with the increasing addition of FeCl3. X-ray diffraction results indicate that TPUs reinforced with FeCl3 or not are amorphous polymers. That FeCl3 coordinates with DMBA first is an effective strategy of getting TPU, which is effective and convenient in the industry without the separation of intermediate products. This work confirms that such Lewis acids as FeCl3 can improve and adjust the properties of TPU contenting coordination structures with an in-situ reaction in a low addition amount, which expands their applications in industry and engineering areas.

13.
Polymers (Basel) ; 13(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803382

RESUMO

Self-healing anticorrosion composite coatings containing isophorone diisocyanate-loaded polyurethane microcapsules were developed, and comprehensive research on prepolymer and microcapsules synthesis, as well as functional composite coatings preparation and characterization, was performed. The influence of the prepolymer type and the concentration of the stabilizing agent used in the synthesis procedure on the properties of the microcapsules was studied in detail. For this purpose, three different prepolymers were prepared from toluene-2,4-diisocyanate (TDI) and either glycerol, 1,4-butanediol, or 1,6-hexanediol, and their chemical properties were investigated. Microcapsules were synthesized from the obtained prepolymers, according to the oil-in-water polymerization method, where 1,6-hexanediol was used as a chain extender, while the concentration of the stabilizing agent in the synthesis procedure was varied. Microcapsules prepared from TDI-glycerol prepolymer, synthesized in the presence of 10 wt% of the stabilizing agent, showed superior chemical, morphological, and thermo-gravimetrical properties; thus, they were incorporated into the coating in the concentration of 20 wt%. The prepared composite coatings demonstrated self-healing and anticorrosion properties, and thus the developed microcapsules show great potential for the incorporation into the composite anticorrosion coatings at critical points where damage can easily occur, providing longer and more efficient anticorrosion protection.

14.
J Med Life ; 13(2): 195-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742513

RESUMO

Polyurethane nano- and micro-structures have been studied intensively in the last decade as drug delivery systems for various herbal extracts as well as pure active biological substances. Their biocompatibility, haemocompatibility, safe degradation, and low-cost production are just a few advantages of these materials that were already used in numerous medical applications (catheters, surgical drapes, wound dressing). The primary purposes of this study include obtaining empty polyurethane microstructures and the assessment of their modifications in media with different pH values. A mixture of two aliphatic diisocyanates and an aqueous phase based on a polyether were used during the synthesis process. The size, homogeneity, and surface charge were studied using a Cordouan Technol. Zetasizer, while the pH measurements were conducted with a portable pH Meter Checker®, Hanna Instruments. The results showed the obtaining of an almost homogeneous sample containing microstructures with sizes ranging between 139 and 151 nm, with a pH value of approximately 6.78 and a Zeta potential of 24.6. Expected decreases in microparticles' sizes were observed in all types of media during a 15-days experiment, but the process was accelerated by a low pH when an increase of the Zeta potential value was noticed as well. Our data provide new information about the degradation process of the polyurethane microstructures on the one hand and the drug release rate of these materials when used as drug carriers, on the other hand.


Assuntos
Portadores de Fármacos/química , Poliuretanos/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Eletricidade Estática
15.
Polymers (Basel) ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635384

RESUMO

Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI) were introduced to produce JPUA-TDI and JPUA-IPDI respectively. 2,4-TDI is categorised as an aromatic isocyanate whilst IPDI is known as a cycloaliphatic isocyanate. Both JPUA-TDI and JPUA-IPDI were then end-capped by the acrylate functional group of 2-hydroxyethyl methacrylate (HEMA). The effects of that isocyanate structure were investigated for their physico, chemical and thermal properties. The changes of the functional groups during each synthesis step were monitored by FTIR analysis. The appearance of urethane peaks was observed at 1532 cm-1, 1718 cm-1 and 3369 cm-1 while acrylate peaks were detected at 815 cm-1 and 1663 cm-1 indicating that JPUA was successfully synthesised. It was found that the molar mass of JPUA-TDI was doubled compared to JPUA-IPDI. Each resin showed a similar degradation pattern analysed by thermal gravimetric analysis (TGA). For the mechanical properties, the JPUA-IPDI-based coating formulation exhibited a higher hardness value but poor adhesion compared to the JPUA-TDI-based coating formulation. Both types of jatropha-based polyurethane acrylate may potentially be used in an ultraviolet (UV) curing system specifically for clear coat surface applications to replace dependency on petroleum-based chemicals.

16.
Polymers (Basel) ; 10(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30966353

RESUMO

Dual component microencapsulated hydrophobic amine and microencapsulated isocyanate were designed and fabricated for self-healing anti-corrosion coating. In this system, novel hydrophobic polyaspartic acid ester (PAE) and isophorone diisocyanate (IPDI) were microencapsulated respectively with melamine-formaldehyde (MF) as shell via in situ polymerization. To reduce the reaction activity between shell-forming MF prepolymer and PAE, another self-healing agent tung oil (TO) was dissolved in PAE and subsequently employed as core material. With field-emission scanning electron microscopy (FE-SEM) and optical microscopy (OM), the resultant microencapsulated IPDI with diameter of 2⁻5 µm showed a spherical shape and smooth surface. More importantly, both the morphology and microstructure of microencapsulated PAE enhanced significantly after addition of TO. Fourier transform infrared spectra (FTIR) analysis confirmed the molecular structure of chemical structure of the microcapsules. Thermal gravimetric analysis (TGA) indicated that both kinds of microcapsules exhibit excellent thermal resistance with the protection of MF shell. Furthermore, the self-healing epoxy coating system containing microencapsulated IPDI and microencapsulated PAE/TO was prepared and investigated. From the micrographs of true color confocal microscope (TCCM), the self-healing coating containing dual-component microcapsules showed excellent self-repairing performance compared to single microencapsulated IPDI system, and the optimal content of dual-component microcapsules in epoxy coating was 20 wt % approximately.

17.
Carbohydr Polym ; 176: 160-166, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927594

RESUMO

A triple-functional (chemical release properties, physical release properties, and monitoring 1-naphthylacetic acid (NAA) release) ethyl cellulose (EC) membrane, modified with fluorescein 1-naphthylacetic acid ester (FNE) and isophorone diisocyanate (IPDI), was prepared (designated as IECF membrane). Fourier transform infrared analysis was conducted to confirm the grafting of FNE to the EC backbone. The chemical and physical release properties of IECF membrane were investigated. The chemical release traits of NAA were related to the hydrolysis of FNE of IECF membrane which was influenced by the NAA concentration at pH 7.2. The physical release traits of NAA were determined by the permeation of NAA from IECF membrane. So IECF membrane has a considerable ability to form a controlled release formula for coating NAA. Furthermore, the hydrolysis of FNE was associated with the recovery of fluorescent intensity of IECF membrane, making the membrane have the ability to monitor low concentration of NAA.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 179: 163-170, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242445

RESUMO

A water-soluble fluorescent carbon dots (FCDs) from cellulose was prepared using one-pot simple hydrothermal method. In this work, a novel fluorescent probe material, fluorescent carbon dots-linked isophorone diisocyanate and ß-cyclodextrin (FCDs-IPDI-CD), was prepared with FCDs, isophorone diisocyanate (IPDI) and ß-cyclodextrin (ß-CD) as raw materials. The structure and morphology of FCDs-IPDI-CD were characterized using the Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The as-prepared FCDs-IPDI-CD exhibits excellent emission property and high stability. The fluorescence of the FCDs-IPDI-CD could be quenched by Cr(VI) ions, and the results indicate that FCDs-IPDI-CD can be used as an effective fluorescent probe for the detection of Cr(VI) ions with good selectivity and sensitivity in an aqueous solution. The influences of environment factors (such as pH, reaction time) on relative fluorescence intensity were studied. According to the optimum conditions, a new sensitive method detecting Cr(VI) ions was established. The method has been successfully applied to detect Cr(VI) ions in water and soil samples with satisfactory results.

19.
Saudi Pharm J ; 22(1): 43-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24493973

RESUMO

Gelatin is an extensively studied biopolymer hydrogel drug carrier due to its biocompatibility, biodegradability and non-toxicity of its biodegraded products formed in vivo. But with the pristine gelatin it is difficult to achieve a controlled and desirable drug release characteristics due to its structural and thermal lability and high solubility in aqueous biofluids. Hence it is necessary to modify its solubility and structural stability in biofluids to achieve controlled release features with improved drug efficacy and broader carrier applications. In the present explorations an effort is made in this direction by cross linking gelatin to different extents using hitherto not studied isocyanate terminated poly(ether) as a macrocrosslinker prepared from poly(ethylene glycol) and isophorone diisocyanate in dimethyl sulfoxide. The crosslinked samples were analyzed for structure by Fourier transform-infrared spectroscopy, thermal behavior through thermogravimetric analysis and differential scanning calorimetry. The cross linked gelatins were biodegradable, insoluble and swellable in biofluids. They were evaluated as a carrier for in vitro drug delivery taking theophylline as a model drug used in asthma therapy. The crosslinking of gelatin decreased the drug release rate by 10-20% depending upon the extent of crosslinking. The modeled drug release characteristics revealed an anomalous transport mechanism. The release rates for ampicillin sodium, 5-fluorouracil and theophylline drugs in a typical crosslinked gelatin carrier were found to depend on the solubility and hydrophobicity of the drugs, and the pH of the fluid. The observed results indicated that this material can prove its mettle as a viable carrier matrix in drug delivery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA