RESUMO
Rare earth elements (REEs) have raised significant environmental contamination concerns, yet the combined toxicity of REE mixtures remains inadequately understood. In this study, acute toxicity of individual, binary and ternary mixtures of lanthanum (La), cerium (Ce), and dysprosium (Dy) on neonatal Daphnia magna was investigated. Dy exhibited the greatest toxicity on neonatal Daphnia magna, followed by La and Ce. The concentration addition (CA) model was superior to the independent action (IA) model for predicting the toxicity of binary mixtures. The CA model indicated additive effects for LaCe mixture and antagonistic effects for LaDy and CeDy mixtures. In contrast, IA model suggested synergistic interactions for LaCe and LaDy mixtures, with antagonistic effects for CeDy mixture when considering dissolved concentration and synergistic effects when considering free-ion concentration. The nonadditive interactions and deviation parameters from the prediction of binary mixture toxicity were assessed by using MixTox model. The ternary mixture of LaCeDy exhibited antagonistic effects on Daphnia magna, and IA model slightly outperformed CA model. Overall, the type of combined toxicity in REE mixtures is influenced by constituents in the mixture and concentration levels. These findings provide scientific basis for the toxicological assessment, risk evaluation and pollution control of REE mixtures. ENVIRONMENTAL IMPLICATION: Rare earth elements (REEs) level is increasing in water environment due to wide use and exploitation. However, currently, we know little about the difference of REEs toxicity and combined toxicity of mixture to aquatic organism, which limited the assessment of toxicity and hazard risk of REEs in natural water. Here, this study demonstrates the acute toxicity of individual, binary and ternary mixtures of lanthanum, cerium, and dysprosium on neonatal Daphnia magna according to the measured data and predicted model, identifying the influence factors for combined toxicity. This discovery offers new insights for the assessment and prediction of REEs toxicity.
RESUMO
Environmental contamination of microplastics (MPs) is ubiquitous worldwide, and co-contamination of arable soils with MPs and other pollutants is of increasing concern, and may lead to unexpected consequences on crop production. However, the overall implications of this combined effect, whether beneficial or detrimental, remain a subject of current debate. Here, we conducted a global meta and machine-learning analysis to evaluate the effects of co-exposure to MPs and other pollutants on crops, utilizing 3346 biological endpoints derived from 68 different studies. Overall, compared with control groups that only exposure to conventional soil contaminants, co-exposure significantly exacerbated toxicity to crops, particularly with MPs intensifying adverse effects on crop morphology, oxidative damage, and photosynthetic efficiency. Interestingly, our analysis demonstrated a significant reduction in the accumulation of pollutants in the crop due to the presence of MPs. In addition, the results revealed that potential adverse effects were primarily associated with crop species, MPs mass concentration, and exposure duration. Our study reaffirms the substantial consequences of MPs as emerging pollutants on crops within the context of integrated pollution, providing novel insights into improving sustainability in agro-ecosystems.
RESUMO
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Assuntos
Atrazina , Peixes-Gato , Ciprofloxacina , Fígado , Superóxido Dismutase , Poluentes Químicos da Água , Atrazina/toxicidade , Animais , Peixes-Gato/imunologia , Ciprofloxacina/toxicidade , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Herbicidas/toxicidade , Fosfatase Alcalina/sangue , Explosão Respiratória/efeitos dos fármacosRESUMO
Tire wear particles (TWPs), common mixed particulate emerging contaminants in the environment, have global per capita emissions accounting for 0.23-1.9â¯kg/year, attracting global attention recently due to their wide detection, small size, mobility, and high toxicity. This review focuses on the occurrence characteristics of TWPs in multiple environmental media, adverse effects on organisms, potential toxicity mechanisms, and environmental risk prevention and control strategies of TWPs. The environmental fate of TWPs throughout the entire process is systematically investigated by the bibliometric analysis function of CiteSpace. This review supplements the gap in the joint toxicity and related toxicity mechanisms of TWPs with other environmental pollutants. Based on the risks review of TWPs and their additives, adverse impacts have been found in organisms from aquatic environments, soil, and humans, such as the growth inhibition effect on Chironomus dilutes. A multi-faceted and rationalized prevention and control treatment of "source-process-end" for the whole process can be achieved by regulating the use of studded tires, improving the tire additive formula, growing plants roadside, encouraging micro-degradation, and other methods, which are first reviewed. By addressing the current knowledge gaps and exploring prospects, this study contributes to developing strategies for reducing risks and assessing the fate of TWPs in multiple environmental media.
Assuntos
Material Particulado , Monitoramento Ambiental , Humanos , Medição de Risco , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Tamanho da PartículaRESUMO
Gen X and F-53B have been popularized as alternatives to PFOA and PFOS, respectively. These per(poly)fluoroalkyl substances pervasively coexist with microplastics (MPs) in aquatic environments. However, there are knowledge gaps regarding their potential eco-environmental risks. In this study, a typical free-floating macrophyte, Eichhornia crassipes (E. crassipes), was selected for hydroponic simulation of a single exposure to PFOA, PFOS, Gen X, and F-53B, and co-exposure with polystyrene (PS) microspheres. F-53B exhibited the highest bioaccumulation followed by Gen X, PFOA, and PFOS. In the presence of PS MPs, the bioavailabilities of the four PFASs shifted and the whole plant bioconcentration factors improved. All four PFASs induced severe lipid peroxidation, which was exacerbated by PS MPs. The highest integrated biomarker response (IBR) was observed for E. crassipes (IBR of shoot: 30.01, IBR of root: 22.79, and IBR of whole plant: 34.96) co-exposed to PS MPs and F-53B. The effect addition index (EAI) model revealed that PS MPs showed antagonistic toxicity with PFOA and PFOS (EAI < 0) and synergistic toxicity with Gen X and F-53B (EAI > 0). These results are helpful to compare the eco-environmental impacts of legacy and alternative PFASs for renewal process of PFAS consumption and provide toxicological, botanical, and ecoengineering insights under co-contamination with MPs.
Assuntos
Bioacumulação , Eichhornia , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Poliestirenos/toxicidade , Microplásticos/toxicidade , Eichhornia/metabolismo , Poluentes Químicos da Água/toxicidade , Fluorocarbonos/toxicidadeRESUMO
Nanoplastics (NPs) and microcystin-LR (MC-LR) are two common and harmful pollutants in water environments, especially at aquafarm where are full of plastic products and algae. It is of great significance to study the toxic effects and mechanisms of the NPs and/or MC-LR on fish at the early stage. In this study, the embryo and larvae of a filtering-feeding fish, Aristichthys nobilis, were used as the research objects. The results showed that the survival and hatching rates of the embryo were not significantly affected by the environmental concentration exposure of these two pollutants. Scanning electron microscopy (SEM) observation displayed that NPs adhered to the surface of the embryo membrane. Transcriptomic and bioinformatic analyses revealed that the NPs exposure activated neuromuscular junction development and skeletal muscle fiber in larvae, and affected C5-Branched dibasic acid metabolism. The metabolic and biosynthetic processes of zeaxanthin, xanthophyll, tetraterpenoid, and carotenoid were suppressed after the MC-LR exposure, which was harmful to the retinol metabolism of fish. Excessive production of superoxide dismutase (SOD) was detected under the MC-LR exposure. The MC-LR and NPs coexposure triggered primary immunodeficiency and adaptive immune response, leading to the possibility of reduced fitness of A.nobilis during the development. Collectively, our results indicate that environmental concentration NPs and MC-LR coexposure could cause toxic damage and enhance sick risk in A.nobilis, providing new insights into the risk of NPs and MC-LR on filtering-feeding fish.
Assuntos
Embrião não Mamífero , Larva , Toxinas Marinhas , Microcistinas , Poluentes Químicos da Água , Microcistinas/toxicidade , Animais , Toxinas Marinhas/toxicidade , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Microplásticos/toxicidade , Peixes-Gato/crescimento & desenvolvimentoRESUMO
Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.
Assuntos
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Adsorção , Shewanella/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/químicaRESUMO
Diisobutyl phthalate (DiBP), is widely chemical replacement for Dibutyl phthalate (DBP). Although DBP and DiBP have been detected in surface water worldwide, few studies to date have systematically assessed the risks of DBP and its alternatives to aquatic organisms. The present study compared DBP and DiBP for their individual and joint toxicity as well as thyroid hormone levels in zebrafish embryo. Transcripts of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were investigated in developing zebrafish larvae by application of real time polymerase chain reaction. The median half-lethal concentrations of DBP and DiBP to zebrafish at 96 h were 0.545 mg L-1 and 1.149 mg L-1, respectively. The joint toxic effect of DBP-DiBP (0.25-0.53 mg L-1) with the same ratio showed a synergistic effect. Thyroid hormones levels increased with exposure to 10 µg L-1 of DBP or 50 µg L-1 of DiBP, and exposure to both compounds significantly increased thyroid gland-specific transcription of thyroglobulin gene (tg), hyronine deiodinase (dio2), and transthyretin (ttr), indicating an adverse effect associated with the HPT axis. Molecular docking results indicated that DBP (-7.10 kcal/M and -7.53 kcal/M) and DiBP (-6.63 kcal/M and -7.42 kcal/M) had the same docking energy with thyroid hormone receptors. Our data facilities an understand of potential harmful effects of DBP and its alternative (DiBP).
Assuntos
Dibutilftalato , Embrião não Mamífero , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/genética , Dibutilftalato/toxicidade , Dibutilftalato/análogos & derivados , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Hormônios Tireóideos/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/genética , Glândula Tireoide/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacosRESUMO
Perfluorooctanoic acid (PFOA) and atrazine are two endocrine disruptors that are widely found in waters. Negative effects of PFOA and atrazine have been studied individually, but few data have focused on their combined effects. Here, zebrafish embryos were used as model to investigate the combined toxicity of PFOA and atrazine. The acute toxicity of atrazine (11.9 mg/L) to zebrafish embryos was much higher than that of perfluorooctanoic acid (224.6 mg/L) as shown by the 120h-LC50 value. Developmental effects, including delayed yolk sac absorption, spinal curvature, and liver abnormalities, were observed in both one- and two-component exposures. Notably, the rate of embryonic malformations in the co-exposure group was more than twice as high as that of single component exposure in the concentration range of 1/8-1/2 EC50, which indicated a synergistic effect of the binary mixture. The synergistic effect of PFOA-atrazine was further validated by combinatorial index (CI) modeling. In addition, changes of amino acid metabolites, reactive oxygen species and superoxide dismutase indicated that oxidative stress might be the main pathway for enhanced toxicity under co-exposure condition. Overall, co-exposure of PFOA and atrazine resulted in stronger developmental effects and more complicated amino acid metabolic response toward zebrafish, compared with single component exposure.
Assuntos
Atrazina , Caprilatos , Embrião não Mamífero , Fluorocarbonos , Poluentes Químicos da Água , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Atrazina/toxicidade , Fluorocarbonos/toxicidade , Caprilatos/toxicidade , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sinergismo FarmacológicoRESUMO
Global climate change as well as human activities have been reported to increase the frequency and severity of both salinization and harmful algal blooms (HABs) in many freshwater systems, but their co-effect on benthic invertebrates has rarely been studied. This study simultaneously examined the joint toxicity of salinity and different cyanobacterial diets on the behavior, development, select biomarkers, and partial life cycle of Chironomus pallidivittatus (Diptera). High concentrations of salts (e.g., 1 g/L Ca2+ and Mg2+) and toxic Microcystis had synergistic toxicity, inhibiting development, burrowing ability and causing high mortality of C. pallidivittatus, especially for the Mg2+ treatment, which caused around 90% death. Low Ca2+ concentration (e.g., 0.01 g/L) promoted larval burrowing ability and inhibited toxin accumulation, which increased the tolerance of Chironomus to toxic Microcystis. However, low Mg2+ concentration (e.g., 0.01 g/L) was shown to inhibit the behavior, development and increase algal toxicity to Chironomus. Toxic Microcystis resulted in microcystin (MC) accumulation, inhibited the burrowing ability of larvae, and increased the proportion of male adults (>50%). The combined toxicity level from low to high was verified by the weight of evidence and the grey TOPSIS model, which integrated five lines of evidence to increase the risk assessment accuracy and efficiency. This is the first study that provided insights into ecological risk arising from the joint effect of salinity and harmful algae on benthic organisms. We suggest that freshwater salinization and HABs should be considered together when assessing ecological threats that arise from external stress.
Assuntos
Chironomidae , Água Doce , Proliferação Nociva de Algas , Salinidade , Animais , Chironomidae/efeitos dos fármacos , Chironomidae/fisiologia , Microcystis/efeitos dos fármacos , Microcystis/fisiologia , Larva/efeitos dos fármacos , Microcistinas/toxicidade , Cianobactérias/fisiologiaRESUMO
Nanoplastics (NPs) may act as carriers of heavy metals and cause complex toxicity to aquatic organisms, while the exact role of NPs in the joint toxicity remains unclear. Here, we investigated the joint toxicity of polystyrene NPs (PS-NPs) and Cd to freshwater algae (Chlorella vulgaris). It was found that PS-NPs (1 mg L-1) could hardly enter algal cells and slightly inhibit algal growth (p < 0.01). The effect of PS-NPs as carriers on the joint toxicity of PS-NPs and heavy metals could be neglected because of the limited adsorption of Cd by PS-NPs, while the PS-NPs altered the cell wall structure and composition, which resulted in the increased algal absorption and toxicity of Cd. Compared to the low dose Cd (0.4 mg L-1) treatment alone, the extracellular and intracellular Cd contents in the cotreatment were significantly increased by 27.3 % and 18.0 %, respectively, due to the increased contents of cell wall polysaccharides (pectin and hemicellulose in particular) by the PS-NPs. Furthermore, after the high dose Cd (2 mg L-1) exposure, the inhibited polysaccharide biosynthesis and the loosen cell wall structure weakened the tolerance of cell wall to abiotic stress, facilitating the entry of PS-NPs into the algal cells and inducing the higher toxicity. These results elucidate the mechanism by which NPs enhance heavy metal toxicity to algae, providing a novel insight into environmental risks of NPs.
Assuntos
Chlorella vulgaris , Metais Pesados , Poluentes Químicos da Água , Cádmio/toxicidade , Microplásticos/toxicidade , Poliestirenos/química , Parede Celular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/químicaRESUMO
The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.
Assuntos
Chlorella vulgaris , Dissulfetos , Metaloides , Antimônio/metabolismo , Molibdênio/toxicidade , Adsorção , Chlorella vulgaris/metabolismo , GlutationaRESUMO
Disrupting effects of pollutants on symbiotic microbiota have been regarded as an important mechanism of host toxicity, with most current research focusing on the intestinal microbiota. In fact, the epidermal microbiota, which participates in the nutrient exchange between hosts and environments, could play a crucial role in host toxicity via community changes. To compare the contributions of intestinal and epidermal symbiotic microorganisms to host toxicity, this study designed single and combined scenarios of soil contamination [nano zero-valent iron (nZVI) and tris (2-chloroethyl) phosphate (TCEP)], and revealed the coupling mechanisms between intestinal/epidermal symbiotic bacterial communities and earthworm toxicological endpoints. Microbiome analysis showed that 15% of intestinal microbes were highly correlated with host endpoints, compared to 45% of epidermal microbes showing a similar correlation. Functional comparisons revealed that key species on the epidermis were mainly heterotrophic microbes with genetic abilities to utilize metal elements and carbohydrate nutrients. Further verifications demonstrated that when facing the co-contamination of nZVI and TCEP, certain symbiotic microorganisms became dominant and consumed zinc, copper, and manganese along with saccharides and amino acids, which may be responsible for the nutritional deficiencies in the host earthworms. The findings can enrich the understanding of the coupling relationship between symbiotic microorganisms and host toxicity, highlighting the importance of epidermal microorganisms in host resistance to environmental pollution.
RESUMO
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
RESUMO
Conjugation with the increment of consumption of polypropylene (PP) masks and antidepressants during pandemic, PP microplastics (MPs) and Venlafaxine (VEN) widely co-existed in surface waters. However, their environmental fate and the combined toxicity were unclear. Hence, we investigated the adsorption behaviors, and associated mechanisms of PP MPs for VEN. The impact factors including pH, salinity, and MPs aging were estimated. The results indicated PP MPs could adsorb amount of VEN within 24 h. The pseudo second-order kinetic model (R2 = 0.97) and Dubinin-Radushkevich model (R2 = 0.89) fitted well with the adsorption capacity of PP MPs for VEN, implying that chemical adsorption accompanied by electrostatic interaction might be the predominant mode for the interactions between PP MPs and VEN. Meanwhile, the adsorption capacity of PP MPs declined from pH of 2.5-4.5 and then increased from 4.5 to 9.5. The increased salinity (5-35 ppt) significantly suppressed the adsorption capacity. Aging by sunlight and UV triggered the formation of new functional group (carbonyl) on MPs, and then enhanced the adsorption capacity for VEN. Gaussian Model analysis further evidenced the electrostatic adsorption occurring in PP MPs and VEN. The combined exposure to PP MPs and VEN showed significantly antagonistic toxicity on Daphnia magna. The adsorption of VEN by PP MPs mitigated the lethal effects and behavioral function impairment posed by VEN on animals, implying the potential protective effects on zooplankton by PP MPs. This study for the first time provides perspective for assessing the environmental fate of MPs and antidepressants in aquatic system.
Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Cloridrato de Venlafaxina , Adsorção , Microplásticos , Polipropilenos , Antidepressivos , Poluentes Químicos da Água/toxicidadeRESUMO
Non-targeted analysis (NTA) has great potential to screen emerging contaminants in the environment, and some studies have conducted in-depth investigation on environmental samples. Here, we used a NTA workflow to identify emerging contaminants in used tire particle (TP) leachates, followed by quantitative prediction and toxicity assessment based on hazard scores. Tire particles were obtained from four different types of automobiles, representing the most common tires during daily transportation. With the instrumental analysis of TP leachates, a total of 244 positive and 104 negative molecular features were extracted from the mass data. After filtering by a specialized emerging contaminants list and matching by spectral databases, a total of 51 molecular features were tentatively identified as contaminants, including benzothiazole, hexaethylene glycol, 2-hydroxybenzaldehyde, etc. Given that these contaminants have different mass spectral responses in the mass spectrometry, models for predicting the response of contaminants were constructed based on machine learning algorithms, in this case random forest and artificial neural networks. After five-fold cross-validation, the random forest algorithm model had better prediction performance (MAECV = 0.12, Q2 = 0.90), and thus it was chosen to predict the contaminant concentrations. The prediction results showed that the contaminant at the highest concentration was benzothiazole, with 4,875 µg/L in the winter tire sample. In addition, the joint toxicity assessment of four types of tires was conducted in this study. According to different hazard levels, hazard scores increasing by a factor 10 were developed, and hazard scores of all the contaminants identified in each TP leachate were summed to obtain the total hazard score. All four tires were calculated to have relatively high risks, with winter tires having the highest total hazard score of 40,751. This study extended the application of NTA research and led to the direction of subsequent targeting studies on highly concentrated and toxic contaminants.
Assuntos
Automóveis , Borracha , Borracha/química , Borracha/toxicidade , Meios de Transporte , Benzotiazóis/toxicidadeRESUMO
Nanoplastics (NPs) and antibiotics (ABs) are two of the emerging marine contaminants that have drawn the most attention in recent years. Given the necessity of figuring out the effects of plastic and antibiotic contamination on marine organism life and population in the natural environment, it is essential to apply rapid and effective biological indicators to evaluate their comprehensive toxic effects. In this study, using mussel (Mytilus coruscus) as a model, we investigated the combined toxic effects of NP (80 nm polystyrene beads) and AB (Norfloxacin, NOR) at environmental-relevant concentrations on antioxidant and immune genes. In terms of the antioxidant genes, NPs significantly increased the relative expression of Cytochrome P450 3A-1 (CYP3A-1) under various concentrations of NOR conditions, but they only significantly increased the relative expression of CYP3A-2 in the high concentration (500 µg L-1 NOR) co-exposure group. In the NP-exposure group which exposed to no or low concentrations of NOR, nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated. In terms of the immune genes, interleukin-1 receptor-associated kinase (IRAK) -1 showed a significant increase in the low-concentration NOR group while a significant inhibition in the high-concentration NOR group. Due to the presence of NPs, exposure to NOR resulted in a significant increase in both IRAK-4 and heat shock protein (HSP) 70. Our findings indicate that polystyrene NPs can exacerbate the effects of NOR on the anti-oxidant and immune defense performance of mussels. This study delves into the toxic effects of NPs and ABs from a molecular perspective. Given the expected increase in environmental pollution due to NPs and ABs, future research is needed to investigate the potential synergistic effect of NPs and ABs on other organisms.
Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes , Poliestirenos/toxicidade , Microplásticos , Norfloxacino/toxicidade , Norfloxacino/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/farmacologia , Poluentes Químicos da Água/metabolismoRESUMO
Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.
Assuntos
Antioxidantes , Oxitetraciclina , Humanos , Microplásticos , Plásticos , Oxitetraciclina/toxicidade , Solo , Plantas , Antibacterianos/toxicidade , PoliésteresRESUMO
Cobalt (Co) and Nickel (Ni) are increasingly found in our environment. We analysed their combined toxicity and uptake mechanisms in the early food chain by studying bacteria and the bacterivorous ciliate Paramecium as a primary consumer. We exposed both species to these metals to measure the toxicity, uptake and transfer of metals from bacteria to Paramecium. We found that Ni is more toxic than Co, and that toxicity increases for both metals when (i) food bacteria are absent and (ii) both metals are applied in combination. The cellular content in bacteria after exposure shows a concentration dependent bias for either Ni or Co. Comparing single treatment and joint exposure, bacteria show increased levels of both metals when these are both exposed. To imitate the basic level of the food chain, we fed these bacteria to paramecia. The cellular content shows a similar ratio of Nickel and Cobalt as in food bacteria. This is different to the direct application of both metals to paramecia, where Cobalt is enriched over Nickel. This indicates that bacteria can selectively pre-accumulate metals for introduction into the food chain. We also analysed the transcriptomic response of Paramecium to sublethal doses of Nickel and Cobalt to gain insight into their toxicity mechanisms. Gene ontology (GO) analysis indicates common deregulated pathways, such as ammonium transmembrane transport and ubiquitine-associated protein degradation. Many redox-related genes also show deregulation of gene expression, indicating cellular adaptation to increased RONS stress. This suggests that both metals may also target the same cellular pathways and this is consistent with the increased toxicity of both metals when used together. Our data reveal complex ecotoxicological pathways for these metals and highlights the different parameters for their fate in the ecosystem, in the food chain and their ecotoxicological risk after environmental contamination.
Assuntos
Níquel , Paramecium , Níquel/análise , Cobalto/análise , Ecossistema , Paramecium/metabolismo , Metais , Bactérias/metabolismoRESUMO
Co-pollution of antibiotics and heavy metal copper (Cu) is common in freshwater environments because of their wide use as antimicrobial agents, especially in aquaculture. However, the toxic effects of coexisting antibiotics and heavy metals on aquatic plants remain unclear. This study investigated the effect of four antibiotics (i.e., enrofloxacin, ENR; tetracycline, TC; sulfamethoxazole, SMX; erythromycin, ERY), Cu, and their mixture on the growth and physiological responses of Hydrilla verticillata (L.f.) Royle. Results showed that the four antibiotics exhibited toxic effects on the growth and physiological indicators of H. verticillata, and root elongation was the most sensitive endpoint of the phytotoxicity test. The median effect concentration (EC50) of root elongation indicated that TC (EC50 = 10.05 mg/L) has the highest level of growth toxicity, and the toxicity of ENR to aquatic plants was close to TC (EC50 = 10.44 mg/L), followed by SMX (EC50 = 20.08 mg/L). However, there was no significant toxic effect of 20 mg/L ERY on the root elongation. Hydrophobicity may be a key factor affecting the phytotoxicity of antibiotics. Moreover, antagonistic toxic effects were observed under ENR + Cu, TC + Cu, SMX + Cu, and ERY + Cu co-exposures at all the experimental concentrations (0.01-20 mg/L). Due to the concentrations of antibiotics in natural waters usually with ng/L levels, our results suggested that environmental antibiotic concentrations probably pose low ecological risk to aquatic plants and indicated the H. verticillata could be used as phytoremediation candidate to remove antibiotic or antibiotic-Cu pollutions in general nature water.