Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.719
Filtrar
1.
Protein Expr Purif ; 225: 106582, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39173964

RESUMO

Phosphatidylinositol 4,5-bisphosphate 3-kinases (PI3K) are a family of kinases whose activity affects pathways needed for basic cell functions. As a result, PI3K is one of the most mutated genes in all human cancers and serves as an ideal therapeutic target for cancer treatment. Expanding on work done by other groups we improved protein yield to produce stable and pure protein using a variety of modifications including improved solubility tag, novel expression modalities, and optimized purification protocol and buffer. By these means, we achieved a 40-fold increase in yield for p110α/p85α and a 3-fold increase in p110α. We also used these protocols to produce comparable constructs of the ß and δ isoforms of PI3K. Increased yield enhanced the efficiency of our downstream high throughput drug discovery efforts on the PIK3 family of kinases.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/química , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Solubilidade , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Gene ; 932: 148901, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209181

RESUMO

A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.


Assuntos
Patos , Perfilação da Expressão Gênica , MAP Quinase Quinase Quinases , Ovário , Polimorfismo de Nucleotídeo Único , Animais , Patos/genética , Feminino , Ovário/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Hipotálamo/metabolismo , Oviductos/metabolismo
3.
J Environ Sci (China) ; 149: 68-78, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181678

RESUMO

The presence of aluminum (Al3+) and fluoride (F-) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F-) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nmol/L. Subsequently, in the presence of F- ions, fluorescence is quenched, with a detection limit of 47.6 nmol/L. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.


Assuntos
Alumínio , Monitoramento Ambiental , Fluoretos , Aprendizado de Máquina , Alumínio/análise , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Fluorescência
4.
J Ethnopharmacol ; 336: 118711, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181286

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of Qi and blood in Traditional Chinese Medicine (TCM), the combination of Qi-reinforcing herbs and blood-activating herbs has a synergistic effect in improving blood stasis syndrome, especially in tumor treatment. The classic "Radix Astragali - Salvia miltiorrhiza" duo exemplifies this principle, renowned for invigorating Qi and activating blood flow, employed widely in tumor therapies. Our prior research underscores the potent inhibition of pancreatic tumor xenografts by the combination of Formononetin (from Radix Astragali) and Salvianolic acid B (from Salvia miltiorrhiza) in vitro. However, it remains unclear whether this combination can inhibit the abnormal vascularization of pancreatic tumors to achieve its anti-cancer effect. AIM OF THE STUDY: Abnormal vasculature, known to facilitate tumor growth and metastasis. Strategies to normalize tumor-associated blood vessels provide a promising avenue for anti-tumor therapy. This study aimed to unravel the therapeutic potential of Formononetin combined with Salvianolic acid B (FcS) in modulating pancreatic cancer's impact on endothelial cells, illuminate the underlying mechanisms that govern this therapeutic interaction, thereby advancing strategies to normalize tumor vasculature and combat cancer progression. MATERIALS AND METHODS: A co-culture system involving Human Umbilical Vein Endothelial Cells (HUVECs) and PANC-1 cells was established to investigate the potential of targeting abnormal vasculature as a novel anti-tumor therapeutic strategy. We systematically compared HUVEC proliferation, migration, invasion, and lumenogenesis in both mono- and co-culture conditions with PANC-1 (H-P). Subsequently, FcS treatment of the H-P system was evaluated for its anti-angiogenic properties. Molecular docking was utilized to predict the interactions between Formononetin and Salvianolic acid B with RhoA, and the post-treatment expression of RhoA in HUVECs was assessed. Furthermore, we utilized shRhoA lentivirus to elucidate the role of RhoA in FcS-mediated effects on HUVECs. In vivo, a zebrafish xenograft tumor model was employed to assess FcS's anti-tumor potential, focusing on cancer cell proliferation, migration, apoptosis, and vascular development. RESULTS: FcS treatment demonstrated a significant, dose-dependent inhibition of PANC-1-induced alterations in HUVECs, including proliferation, migration, invasion, and tube formation capabilities. Molecular docking analyses indicated potential interactions between FcS and RhoA. Further, FcS treatment was found to downregulate RhoA expression and modulated the PI3K/AKT signaling pathway in PANC-1-induced HUVECs. Notably, the phenotypic inhibitory effects of FcS on HUVECs were attenuated by RhoA knockdown. In vivo zebrafish studies validated FcS's anti-tumor activity, inhibiting cancer cell proliferation, metastasis, and vascular sprouting, while promoting tumor cell apoptosis. CONCLUSIONS: This study underscores the promising potential of FcS in countering pancreatic cancer-induced endothelial alterations. FcS exhibits pronounced anti-abnormal vasculature effects, potentially achieved through downregulation of RhoA and inhibition of the PI3K/Akt signaling pathway, thereby presenting a novel therapeutic avenue for pancreatic cancer management.


Assuntos
Benzofuranos , Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Isoflavonas , Neoplasias Pancreáticas , Proteína rhoA de Ligação ao GTP , Isoflavonas/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Benzofuranos/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Peixe-Zebra , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Depsídeos
5.
Protein Expr Purif ; 225: 106583, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39168394

RESUMO

In recombinant protein purification, differences in isoelectric point (pI)/surface charge and hydrophobicity between the product and byproducts generally form the basis for separation. For bispecific antibodies (bsAbs), in many cases the physicochemical difference between product and byproducts is subtle, making byproduct removal considerably challenging. In a previous report, with a bsAb case study, we showed that partition coefficient (Kp) screening for the product and byproducts under various conditions facilitated finding conditions under which effective separation of two difficult-to-remove byproducts was achieved by anion exchange (AEX) chromatography. In the current work, as a follow-up study, we demonstrated that the same approach enabled identification of conditions allowing equally good byproduct removal by mixed-mode chromatography with remarkably improved yield. Results from the current and previous studies proved that separation factor determination based on Kp screening for product and byproduct is an effective approach for finding conditions enabling efficient and maximum byproduct removal, especially in challenging cases.


Assuntos
Anticorpos Biespecíficos , Proteínas Recombinantes , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Humanos
6.
Redox Biol ; 76: 103333, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39226764

RESUMO

BACKGROUND & AIMS: Sarcopenia, a prevalent condition, significantly impacts the prognosis of patients with decompensated cirrhosis (DC). Serum fibroblast growth factor 21 (FGF21) levels are significantly higher in DC patients with sarcopenia. Satellite cells (SCs) play a role in aging- and cancer-induced sarcopenia. Here, we investigated the roles of FGF21 and SCs in DC-related sarcopenia as well as the underlying mechanisms. METHODS: We developed two DC mouse models and performed in vivo and in vitro experiments. Klotho beta (KLB) knockout mice in SCs were constructed to investigate the role of KLB downstream of FGF21. In addition, biological samples were collected from patients with DC and control patients to validate the results. RESULTS: Muscle wasting and impaired SC myogenesis were observed in the DC mouse model and patients with DC. Elevated circulating levels of liver-derived FGF21 were observed, which were significantly negatively correlated with skeletal muscle mass/skeletal muscle index. Liver-secreted FGF21 induces SC dysfunction, contributing to sarcopenia. Mechanistically, FGF21 in the DC state exhibits enhanced interactions with KLB on SC surfaces, leading to downstream phosphatase and tensin homolog upregulation. This inhibits the protein kinase B (PI3K/Akt) pathway, hampering SC proliferation and differentiation, and blocking new myotube formation to repair atrophy. Neutralizing circulating FGF21 using neutralizing antibodies, knockdown of hepatic FGF21 by adeno-associated virus, or knockout of KLB in SCs effectively improved or reversed DC-related sarcopenia. CONCLUSIONS: Hepatocyte-derived FGF21 mediates liver-muscle crosstalk, which impairs muscle regeneration via the inhibition of the PI3K/Akt pathway, thereby demonstrating a novel therapeutic strategy for DC-related sarcopenia.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas Klotho , Cirrose Hepática , Sarcopenia , Células Satélites de Músculo Esquelético , Animais , Sarcopenia/metabolismo , Sarcopenia/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Células Satélites de Músculo Esquelético/metabolismo , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Masculino , Desenvolvimento Muscular , Camundongos Knockout , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino
7.
Environ Geochem Health ; 46(10): 412, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230594

RESUMO

This paper presents findings on groundwater physiochemical composition and radioactivity levels in households in Bac Lieu province, Vietnam. Through discriminant analysis, it was observed that groundwater quality exhibits spatial variations corresponding to saline intrusion zones. The paired-samples T-tests revealed significantly different ratios of Ra-224, Ra-226, and Ra-228 isotopes between Na-Cl and Ca-Na-HCO3 water types. All three water types had a ratio of Ra-226/Ra-228 of approximately one, indicating the presence of groundwater aquifers beneath the crust and fluvial marine sediment. Furthermore, strong associations between sulfate and calcium suggest that CO2 enrichment in groundwater aquifers indicates anoxic aquatic environments. Twenty-five of the thirty-three evaluated samples exceeded the national technical regulations for domestic water quality with parameters such as chloride, sulfate, sodium, gross alpha, or total dissolved solids. Fifteen samples exceeded gross alpha's allowable contamination threshold of 0.1 Bq/L. The combination of Ra-226 and Ra-228 did not surpass the U.S. Environmental Protection Agency's recommended limit of 0.185 Bq/L. However, nineteen samples exhibited annual committed effective doses of radium isotopes for infants that exceeded the WHO recommendation of 0.1 mSv/year.


Assuntos
Água Subterrânea , Rádio (Elemento) , Poluentes Radioativos da Água , Vietnã , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Humanos , Rádio (Elemento)/análise , Monitoramento de Radiação/métodos , Características da Família , Sulfatos/análise
8.
Mikrochim Acta ; 191(10): 624, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39322798

RESUMO

All-solid-state ion selective electrodes (ASS-ISEs) are easy to miniaturize and array, meeting the needs of home sensing devices. However, ASS-ISEs still faces challenges in accuracy and stability due to basic potential changes caused by non-specific adsorption of charged background compositions and the complex electrode preparation steps. To this end, our group successfully subtracted the background signal by integrating a self-calibrating channel in the sensing array and simplified the electrode preparation steps by preparing multi-functional PS-Au nanocomposites. However, the uniformity and gold content of PS-Au nanocomposites are difficult to control, so Au@PS nanocomposites are prepared as sensor materials in this paper to further reduce the differences between batches of electrodes. K+ Au@PS sensing array can be obtained by directly dropping Au@PS nanocomposites on the screen-printed carbon electrodes (SPCEs), which shows a near Nernstian behavior in the range 1.0 × 10-3 M to 0.3 M and good reproducibility in real sample testing. The detection results by K+ Au@PS sensing array for K+ in human morning urine agreed well with that tested by ICP-AES, which make the K+-ASS-ISE suitable for home health monitoring.

9.
Dig Dis Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322809

RESUMO

BACKGROUND: Actin-like protein 8 (ACTL8) significantly correlates with tumor growth and prognosis across various cancer types. Nevertheless, the potential relationship between ACTL8 and gastric cancer (GC) remains uncertain. OBJECTIVE: This study aimed to elucidate the role of ACTL8 in human GC cells and to explore its mechanism. METHODS: Bioinformatics analysis tools, such as GEPIA2, Kaplan-Meier, and STRING, were utilized for a comprehensive investigation of the characteristics and functional roles of ACTL8 in GC, including differential expression, prognostic value, and related signaling pathways. Subsequently, gene expression analyses, cell function assays, and signaling pathway experiments were conducted to verify key findings. RESULTS: Bioinformatics analysis showed that ACTL8 was significantly elevated in GC and closely associated with poor prognosis. Gene expression experiments confirmed the bioinformatics results. Furthermore, ACTL8 knockdown markedly reduced GC cell proliferation and inhibited migration and invasion. Mechanistically, a significant increase in the phosphorylation levels of signaling proteins was observed in GC cells following ACTL8 overexpression, and PI3K/Akt/mTOR pathway inhibitors could reverse this effect. CONCLUSION: ACTL8 expression is significantly upregulated in GC cells and is closely correlated with poor patient prognosis. Further mechanistic studies revealed that ACTL8 may promote GC cell migration and proliferation through activation of the PI3K/Akt/mTOR signaling pathway. Consequently, ACTL8 emerges as a promising therapeutic target for GC.

10.
Sci Total Environ ; 954: 176469, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317253

RESUMO

Environmental contamination has been recognized as a significant threat to human well-being, and recent findings of microplastic presence in human cardiac tissues have raised concerns. However, research on the effects of airborne nanoplastics (NPs) on cardiac physiology remains limited. We utilized a comprehensive body exposure apparatus to simulate the impact of airborne polystyrene NPs pollution, focusing on understanding how airborne NPs affect cardiac morphology and function. Following two weeks of NPs exposure, mice exhibited a 23.89 ± 8.30 % reduction in heart mass, a 20.05 ± 2.97 % decrease in heart rate as detected, and a myocardial electrical conduction block. Echocardiography showed significant changes in cardiac contractility, with increases in cardiac ejection fraction and stroke volume of 13.00 ± 3.00 % and 43.00 ± 17.00 %, respectively. In addition, histologic assessments revealed signs of ventricular hypertrophy, ventricular myocardial hypertrophy, and myocardial necrotic fibrosis. Of particular interest, our mechanistic investigations highlighted the harmful effects of NPs on cardiac structure and function, mediated through extracellular matrix (ECM) receptor interactions and the PI3K/AKT/BCL-2 signaling pathway. The insights gained provide a foundation for understanding the risks posed by airborne NPs to human cardiac health, emphasizing the need for increased vigilance and implementation of mitigation strategies in environmental management.

11.
Front Immunol ; 15: 1415839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308865

RESUMO

The question whether interference with the ubiquitous splicing machinery can lead to cell-type specific perturbation of cellular function is addressed here by T cell specific ablation of the general U5 snRNP assembly factor CD2BP2/U5-52K. This protein defines the family of nuclear GYF domain containing proteins that are ubiquitously expressed in eukaryotes with essential functions ascribed to early embryogenesis and organ function. Abrogating CD2BP2/U5-52K in T cells, allows us to delineate the consequences of splicing machinery interferences for T cell development and function. Increased T cell lymphopenia and T cell death are observed upon depletion of CD2BP2/U5-52K. A substantial increase in exon skipping coincides with the observed defect in the proliferation/differentiation balance in the absence of CD2BP2/U5-52K. Prominently, skipping of exon 7 in Mdm4 is observed, coinciding with upregulation of pro-apoptotic gene expression profiles upon CD2BP2/U5-52K depletion. Furthermore, we observe enhanced sensitivity of naïve T cells compared to memory T cells to changes in CD2BP2/U5-52K levels, indicating that depletion of this general splicing factor leads to modulation of T cell homeostasis. Given the recent structural characterization of the U5 snRNP and the crosslinking mass spectrometry data given here, design of inhibitors of the U5 snRNP conceivably offers new ways to manipulate T cell function in settings of disease.


Assuntos
Homeostase , Linfócitos T , Animais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos , Apoptose , Diferenciação Celular/imunologia , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/imunologia , Proliferação de Células , Linfopenia/imunologia , Linfopenia/genética , Splicing de RNA
12.
J Hepatocell Carcinoma ; 11: 1763-1775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309302

RESUMO

Background: Liver cancer is the sixth most common cancer worldwide, and hepatocellular carcinoma (HCC) presents one of the most challenging global health issues. ZDHHC20, a member of the ZDHHC palmitoyltransferase (ZDHHC-PAT) family, is involved in a reversible lipid modification known as palmitoylation, which contributes to the occurrence and progression of various tumors. However, the specific mechanisms underlying the involvement of ZDHHC20 in this process are unclear. Methods: The effects of both ZDHHC20 knockdown and overexpression on hepatocellular carcinoma cell proliferation were evaluated using PCR, Western blotting, CCK-8 assay, colony formation assay, cell cycle analysis, apoptosis analysis, and EDU assay. The TCGA-LIHC dataset was analyzed bioinformatically, and the phosphorylation level of PI3K and AKT in SK-Hep1 and Huh7 cells was assessed using Western blotting. Nude mouse subcutaneous xenograft experiments were conducted to evaluate the effects of different treatment conditions on mouse tumor growth. Results: ZDHHC20 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression of ZDHHC20 promoted cell proliferation and inhibited apoptosis. Knockdown of ZDHHC20 also decreased phosphorylation of PI3K and AKT in HCC, whereas overexpression of ZDHHC20 increased phosphorylation of PI3K and AKT. The PI3K-AKT pathway inhibitors, LY294002 and MK2206, effectively inhibited the promotional effects of ZDHHC20 on the proliferation and growth of HCC. Conclusion: High expression of ZDHHC20 promotes the proliferation and tumor growth of HCC by activating the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 and the AKT inhibitor MK2206 inhibit the promotional effects of ZDHHC20 on the proliferation of HCC and the growth of tumors.

13.
Heliyon ; 10(18): e37669, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309835

RESUMO

This study investigates modeling the dynamics of a 3D translational parallel manipulator with closed chains using feedforward neural networks (FFNNs). The dataset exceeds 50,000 samples, incorporating experimental data collected from a robot prototype using MATLAB® real-time workshop and the National InstrumentsTM DAQ toolbox, as well as CAD simulation data from MSC ADAMS software. While achieving satisfactory mean squared error (MSE), some predictions did not fully capture the manipulator's dynamics, with small overfitting observed. A Deep Neural Network (DNN) was tested but faced overfitting and high computational costs, despite being trained on a subset of the dataset. This highlighted the limitations of DNNs for modeling such complicated parallel robots with closed chains and parallelograms. FFNNs were preferred for their simplicity and lower overfitting risk. L2 regularization and k-fold validation were applied to improve performance. Transfer learning (TL) was also employed, fine-tuning a new network with weights from pre-trained FFNNs using a smaller, unseen dataset. This approach significantly reduced MSE and completely eliminated overfitting, demonstrating the effectiveness of TL in refining model performance for forward and inverse dynamics. These findings suggest that FFNNs, combined with TL, L2 regularization, and k-fold validation, offer a robust method for accurately modeling complex robotic dynamics, enhancing control and optimization strategies for complicated robotic systems. Training for all networks was conducted within the MATLAB® environment.

14.
World J Methodol ; 14(3): 89761, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39310238

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the genus Beta coronavirus and the family of Coronaviridae. It is a positive-sense, non-segmented single-strand RNA virus. Four common types of human coronaviruses circulate globally, particularly in the fall and winter seasons. They are responsible for 10%-30% of all mild upper respiratory tract infections in adults. These are 229E, NL63 of the Alfacoronaviridae family, OC43, and HKU1 of the Betacoronaviridae family. However, there are three highly pathogenic human coronaviruses: SARS-CoV-2, Middle East respiratory syndrome coronavirus, and the latest pandemic caused by the SARS-CoV-2 infection. All viruses, including SARS-CoV-2, have the inherent tendency to evolve. SARS-CoV-2 is still evolving in humans. Additionally, due to the development of herd immunity, prior infection, use of medication, vaccination, and antibodies, the viruses are facing immune pressure. During the replication process and due to immune pressure, the virus may undergo mutations. Several SARS-CoV-2 variants, including the variants of concern (VOCs), such as B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) have been reported from various parts of the world. These VOCs contain several important mutations; some of them are on the spike proteins. These mutations may lead to enhanced infectivity, transmissibility, and decreased neutralization efficacy by monoclonal antibodies, convalescent sera, or vaccines. Mutations may also lead to a failure of detection by molecular diagnostic tests, leading to a delayed diagnosis, increased community spread, and delayed treatment. We searched PubMed, EMBASE, Covariant, the Stanford variant Database, and the CINAHL from December 2019 to February 2023 using the following search terms: VOC, SARS-CoV-2, Omicron, mutations in SARS-CoV-2, etc. This review discusses the various mutations and their impact on infectivity, transmissibility, and neutralization efficacy.

15.
Global Spine J ; : 21925682241288202, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312910

RESUMO

STUDY DESIGN: A retrospective study. OBJECTIVES: To explore the relationship between K-line tilt and short-term surgical outcomes following laminoplasty in patients with multilevel degenerative cervical myelopathy (DCM), and to evaluate the potential of K-line tilt as a reliable preoperative predictor. METHODS: A retrospective analysis was performed for 125 consecutive patients who underwent laminoplasty for multilevel DCM. The radiographic parameters utilized in this study encompassed T1 slope (T1S), C2-C7 lordosis (CL), C2-C7 sagittal vertical axis (cSVA), T1 slope minus C2-C7 lordosis (T1S-CL), C2-C7 range of motion (ROM), and K-line tilt. The neurological recovery was evaluated using the Japanese Orthopaedic Association (JOA) score. Pearson correlation coefficients were calculated to assess the relationship between K-line tilt and other classical cervical parameters. Logistic regression analysis was employed to examine the association between K-line tilt and surgical outcomes. RESULTS: Of the 125 patients, 89 were men. The mean age of the patients was 61.74 ± 11.31 years. The results indicated a correlation between the K-line tilt and the cSVA (r = 0.628, P < 0.001), T1S (r = 0.259, P = 0.004), and T1S-CL (r = 0.307, P < 0.001). The K-line tilt showed an association with the failure of the JOA recovery rate (RR) to reach the minimal clinically important difference (MCID) and the occurrence of postoperative kyphotic deformity. We identified cutoff values for the K-line tilt which predict the failure of the JOA RR to reach the MCID and postoperative kyphotic deformity as 10.13° and 9.93°, respectively. CONCLUSIONS: The K-line tilt is an independent preoperative risk factor associated with both the failure of the JOA RR to reach the MCID and the occurrence of postoperative kyphotic deformity in patients with multilevel DCM after laminoplasty.

16.
Front Med (Lausanne) ; 11: 1436774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314226

RESUMO

Clonal MAPK-pathway activating mutations in the MAP2K1 (MEK1) gene are present in approximately 9% of cutaneous melanomas. These mutations are divided into three classes: RAF-dependent, RAF-regulated, RAF-independent. Cell lines with class-2 or RAF-regulated MAP2K1-mutations are most responsive to MEK-inhibitors. We present a patient with a class-2 MAP2K1-mutant stage IV-M1d melanoma who experienced extra- and intracranial progressive disease following treatment with immune-checkpoint inhibitors. The patient was treated with the MEK-inhibitor trametinib (2 mg OD) to which a low-dose of dabrafenib (50 mg BID) was added to mitigate skin-toxicity. Following documentation of a partial response (PR), she developed one new, and increase in volume of two pre-existing brain metastases that were treated with stereotactic radiosurgery (SRS) while continuing trametinib and dabrafenib. Thereafter, a deep partial radiologic and metabolic response both extra-and intra-cranially was achieved and is ongoing 88 weeks after initiating trametinib. She experienced no grade > 2 adverse events. Focal post-radiation necrosis at site of an irradiated brain metastasis developed 9 months after SRS and is successfully being treated with low-dose bevacizumab. This is the first published case of a durable intracranial disease control with the MEK-inhibitor trametinib of a stage IV-M1d class-2 MAP2K1-mutant melanoma. This illustrates the utility of NGS profiles that include class-1/2 MAP2K1-mutations in patients with melanoma and other malignancies to provide valuable information on a potentially active individualized treatment option. A prospective clinical trial that further evaluates the efficacy of MEK-inhibitor therapies in MAP2K1-mutated tumors is justified.

17.
J Inflamm Res ; 17: 6501-6519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314229

RESUMO

Background: Knee osteoarthritis (KOA) is on the rise due to lifestyle changes, obesity, and aging, yet effective treatments are lacking. Traditional Chinese manual therapy (Tuina) is promising for KOA. However, its mechanism remains unclear. Objective: This study aims to determine the effects of Tuina on a rat KOA model, focusing on the role of chondrocyte apoptosis and autophagy mechanisms. Methods: KOA was induced in rats by intra-articular injection of L-cysteine-activated papain into the right knee. Thirty-six male Sprague Dawley (SD) rats were randomly divided into blank, model control, Tuina, and positive drug groups. Paw withdrawal threshold tests, knee joint swelling, and passive range of motion assessed knee behavior. Cartilage tissue cytology, cytokine contents, and the mRNA and protein expression of PI3K/AKT/mTOR signaling pathway components were analyzed using HE and TUNEL staining, ELISA, RT-qPCR, and Western blotting, respectively. In addition, we used machine learning methods to conduct a secondary analysis of the dataset from the in vivo experiments in rats to verify the findings. Results: Tuina significantly relieved pain and joint swelling, and improved range of motion. Staining showed reduced articular cartilage destruction and apoptosis. Tuina reduced the serum levels of IL-1ß, IL-17, MMP-3, and MMP-13. Tuina downregulated Bax, ULK1, Beclin-1, LC3-II/I and upregulated PI3K, AKT, mTOR, and BCL-2 in cartilage tissue. The machine learning results indicated an 83.33% accuracy for the prediction model, remaining stable through both uni- and multivariate analyses. Tuina yielded the best comprehensive efficacy on KOA as well as better rat behavior and PI3K/AKT/mTOR signaling pathway improvement effect than positive drugs, while its cytokine-reducing ability was comparable to that of positive drugs. Conclusion: Tuina can alleviate cartilage tissue injury in KOA, relieve inflammation, and reduce chondrocyte apoptosis and autophagy, the underlying mechanisms of which may be associated with activation of the PI3K/AKT/mTOR signaling pathway.

18.
Front Pharmacol ; 15: 1431692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314757

RESUMO

Ischemic stroke (IS), predominantly triggered by blockages in cerebral blood flow, is increasingly recognized as a critical public health issue. The combination of Salvia miltiorrhiza (SM) and Cortex moutan (CM), traditional herbs in Eastern medicine, are frequently used for managing heart and brain vascular conditions. However, the exact mechanisms by which this herb pair (SC) combats IS remain largely unexplored. This investigation focuses on pinpointing the active constituents in SC that contribute to its protective role and deciphering the mechanisms countering cerebral ischemia, particularly in a middle cerebral artery occlusion (MCAO) rat model. We employed UPLC-Q-TOF-MS/MS alongside network pharmacology for predicting SC's target actions against IS. Key ingredients were examined for their interaction with principal targets using molecular docking. The therapeutic impact was gauged through H&E, TUNEL, and Nissl staining, complemented by transcriptomic and metabolomic integration for mechanistic insights, with vital genes confirmed via western blot. UPLC-Q-TOF-MS/MS analysis revealed that the main components of SC included benzoylpaeoniflorin, salvianolic acid B, oxypaeoniflora, salvianolic acid A, and others. Network pharmacology analysis indicated that SC's mechanism in treating IS primarily involves inflammation, angiogenesis, and cell apoptosis-related pathways, potentially through targets such as AKT1, TNF, PTGS2, MMP9, PIK3CA, and VEGFA. Molecular docking underscored strong affinities between these constituents and their targets. Our empirical studies indicated SC's significant role in enhancing neuroprotection in IS, with transcriptomics suggesting the involvement of the VEGFA/PI3K/AKT pathway and metabolomics revealing improvements in various metabolic processes, including amino acids, glycerophospholipids, sphingomyelin, and fatty acids metabolisms.

19.
J Pharm Anal ; 14(9): 100961, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39315123

RESUMO

ß-elemene has been observed to exert inhibitory effects on a multitude of tumors, primarily through multiple pathways such as the inhibition of cancer cell proliferation and the induction of apoptosis. The present study is designed to elucidate the role and underlying mechanisms of ß-elemene in the therapeutic intervention of non-small cell lung cancer (NSCLC). Both in vitro and in vivo experimental models corroborate the inhibitory potency of ß-elemene on NSCLCs. Our findings indicate that ß-elemene facilitates the maturation of miR-127-3p by inhibiting CBX8. Functioning as an upstream regulator of MAPK4, miR-127-3p deactivates the Akt/mTOR/p70S6K pathway by targeting MAPK4, thereby inducing autophagy in NSCLCs. Additionally, ß-elemene augments the packaging of miR-127-3p into exosomes via SYNCRIP. Exosomal miR-127-3p further stimulates M1 polarization of macrophages by suppressing ZC3H4. Taken together, the detailed understanding of the mechanisms through which ß-elemene induces autophagy in NSCLCs and facilitates M1 polarization of macrophages provides compelling scientific evidence supporting its potential utility in NSCLC treatment.

20.
Heliyon ; 10(18): e37457, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315140

RESUMO

Road crashes represent a significant public health and safety concern globally, and Malaysia is no exception. Understanding the trends and patterns of road crashes is essential for devising effective strategies to mitigate risks and enhance road safety. This study presents a comprehensive analysis of road crash dynamics, focusing on road users, severity patterns and geographical patterns in Malaysia from 2012 to 2022. Data sourced from the Royal Malaysian Police (RMP) are utilized to examine various aspects of road crashes. Road crash trend, geographical patterns, linear trend analysis and K-means clustering are employed to explore patterns of road crash in Malaysia. The findings reveal that motorcycles consistently emerged as the most involved road user. Geographical patterns discovered that Selangor exhibits higher crash number. Linear trend analysis revealed significant upward trends in crash frequency prior to the pandemic, while the number of fatalities resulting from road crash showed a downward trend over the observed period. K-means clustering identified that Selangor recorded high total crashes and high total of fatalities. This study also considers the influence of the Covid-19 pandemic on road crash dynamics, highlighting changes in travel patterns and behaviour. There also have been notable successes, such as the reduction in total fatalities and the effectiveness of targeted interventions via the accomplishments of initiatives of Malaysian Road Safety Plan 2014-2022.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA