Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 213(4): 107793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34481988

RESUMO

On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.


Assuntos
Citoesqueleto/metabolismo , Filamentos Intermediários/genética , Queratinas/genética , Lagartos/genética , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Epiderme/metabolismo , Epitélio/metabolismo , Glicina/química , Glicina/genética , Glicina/metabolismo , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Queratinas/química , Queratinas/metabolismo , Lagartos/classificação , Lagartos/metabolismo , Família Multigênica/genética , Prolina/química , Prolina/genética , Prolina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
2.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669958

RESUMO

The epithelial cytoskeleton encompasses actin filaments, microtubules, and keratin intermediate filaments. They are interconnected and attached to the extracellular matrix via focal adhesions and hemidesmosomes. To study their interplay, we inhibited actin and tubulin polymerization in the human keratinocyte cell line HaCaT by latrunculin B and nocodazole, respectively. Using immunocytochemistry and time-lapse imaging of living cells, we found that inhibition of actin and tubulin polymerization alone or in combination induced keratin network re-organization albeit differently in each situation. Keratin filament network retraction towards the nucleus and formation of bundled and radial keratin filaments was most pronounced in latrunculin-B treated cells but less in doubly-treated cells and not detectable in the presence of nocodazole alone. Hemidesmosomal keratin filament anchorage was maintained in each instance, whereas focal adhesions were disassembled in the absence of actin filaments. Simultaneous inhibition of actin and tubulin polymerization, therefore, allowed us to dissect hemidesmosome-specific functions for keratin network properties. These included not only anchorage of keratin filament bundles but also nucleation of keratin filaments, which was also observed in migrating cells. The findings highlight the fundamental role of hemidesmosomal adhesion for keratin network formation and organization independent of other cytoskeletal filaments pointing to a unique mechanobiological function.


Assuntos
Citoesqueleto de Actina/metabolismo , Hemidesmossomos/metabolismo , Queratinas/metabolismo , Movimento Celular , Adesões Focais/metabolismo , Células HaCaT , Humanos , Microtúbulos/metabolismo , Modelos Biológicos
3.
Int J Biol Macromol ; 158: 894-902, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32387614

RESUMO

Hagfish exudate is a natural biological macromolecule made of keratin intermediate filament protein skeins and mucin vesicles. Here, we successfully examined this remarkable biomaterial as a substrate for three-dimensional (3D) cell culturing purposes. After the sterilization with chloroform vapor, Dulbecco's modified eagle medium was mixed with the exudate to rupture the vesicles and skeins; a highly soft, adherent, fibrous and biocompatible hydrogel was formed. A variety of cells, including Hela-FUCCI, NMuMG-FUCCI, 10T1/2 and C2C12, was cultured on the hagfish exudate. A remarkable 3D growth by ~2.5 folds after day 3, ~5 folds after day 5, ~10 folds after day 7 and ~15 folds after day 14 were seen compared to day one of culturing in the hagfish exudate scaffold. In addition, the phase contrast, fluorescent and confocal microscopy observations confirmed the organoid shape formation within the three-week culture. The viability of cells was almost 100% indicating the great in vitro and in vivo potential of this exceptional biomaterial with no cytotoxic effect.

4.
J Struct Biol ; 204(2): 207-214, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125694

RESUMO

Keratin-associated protein 8.1 (KAP8.1) is a hair protein whose structure, biochemical roles, and protein distribution patterns have not been well characterized. In this study, we generated a monoclonal antibody against human KAP8.1 to analyze the protein's roles and distribution in the human hair shaft. Using this antibody, we revealed that KAP8.1 was predominantly expressed in discrete regions of the keratinizing zone of the hair shaft cortex. The protein expression patterns paralleled the distribution of KAP8.1 mRNA and suggested that KAP8.1 plays a role associated with cells to control hair curvature. Cross-reactivity among species and epitope analysis indicated that the monoclonal antibody recognized a linear epitope shared among human, mouse, and sheep KAP8.1. The antibody failed to interact with sheep KAP8.1 in native conformation, suggesting that structural features of KAP8.1 vary among species.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Western Blotting , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
5.
Adv Exp Med Biol ; 1054: 155-169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29797273

RESUMO

Macrofibrils are the main structural component of the hair cortex, and are a composite material in which trichokeratin intermediate filaments (IFs) are arranged as organised arrays embedded in a matrix composed of keratin-associated proteins (KAPs) and keratin head groups. Various architecture of macrofibrils is possible, with many having a central core around which IFs are helically arranged, an organisation most accurately described as a double-twist arrangement. In this chapter we describe the architecture of macrofibrils and then cover their formation, with most of the material focusing on the theory that the initial stages of macrofibril formation are as liquid crystals.


Assuntos
Cabelo/química , Filamentos Intermediários/ultraestrutura , Queratinas/ultraestrutura , Animais , Citoesqueleto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA