Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Forensic Sci Int ; 363: 112196, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39151243

RESUMO

High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) is a technique for rapid and reliable detection of trace compounds down to ppbV-levels within one second. Compared to classical IMS operating at ambient pressure and providing the ion mobility at low electric fields, HiKE-IMS can also provide the analyte-specific field dependence of the ion mobility and a fragmentation pattern at high reduced electric field strengths. The additional information about the analyte obtained by varying the reduced electric field strength can contribute to reliable detection. Furthermore, the reduced number of ion-molecule reactions at the low operating pressure of 10 - 40 mbar and the shorter reaction times reduce the impact of competing ion-molecule reactions that can cause false negatives. In this work, we employ HiKE-IMS for the analysis of phenyl-2-propanone (P2P) and other precursor chemicals used for synthesis of methamphetamine and amphetamine. The results show that the precursor chemicals exhibit different behavior in HiKE-IMS. Some precursors form a single significant ion species, while others readily form a fragmentation pattern. Nevertheless, all drug precursors can be distinguished from each other, from the reactant ions and from interfering compounds. In particular, the field-dependent ion mobility as an additional separation dimension aids identification, potentially reducing the number of false positive alarms in field applications. Furthermore, the analysis of a seized illicit P2P sample shows that even low levels of P2P can be detected despite the complex background present in the headspace of real samples.

2.
J Mol Model ; 30(9): 300, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107552

RESUMO

CONTEXT: We demonstrate that the minimum of the reaction force curve of a diatomic or polyatomic molecule undergoing bond dissociation is significant in several respects. As has been pointed out in the past, it is the point at which the force opposing dissociation is strongest. It marks the boundary between the primarily structural stage of a bond dissociation (stretching) and the transition region between the stretched bond and independent atoms. We now show that the reaction force minimum is also where the kinetic and potential energy curves tend to change direction abruptly. At this point, the total energy E(R) has increased by about 27% of the dissociation energy, for both diatomic and polyatomic molecules. METHODS: Dissociation curves are analyzed at the UHF/daug-cc-pV5Z level of theory using Gaussian 16.

3.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001027

RESUMO

Remote patient-monitoring systems are helpful since they can provide timely and effective healthcare facilities. Such online telemedicine is usually achieved with the help of sophisticated and advanced wearable sensor technologies. The modern type of wearable connected devices enable the monitoring of vital sign parameters such as: heart rate variability (HRV) also known as electrocardiogram (ECG), blood pressure (BLP), Respiratory rate and body temperature, blood pressure (BLP), respiratory rate, and body temperature. The ubiquitous problem of wearable devices is their power demand for signal transmission; such devices require frequent battery charging, which causes serious limitations to the continuous monitoring of vital data. To overcome this, the current study provides a primary report on collecting kinetic energy from daily human activities for monitoring vital human signs. The harvested energy is used to sustain the battery autonomy of wearable devices, which allows for a longer monitoring time of vital data. This study proposes a novel type of stress- or exercise-monitoring ECG device based on a microcontroller (PIC18F4550) and a Wi-Fi device (ESP8266), which is cost-effective and enables real-time monitoring of heart rate in the cloud during normal daily activities. In order to achieve both portability and maximum power, the harvester has a small structure and low friction. Neodymium magnets were chosen for their high magnetic strength, versatility, and compact size. Due to the non-linear magnetic force interaction of the magnets, the non-linear part of the dynamic equation has an inverse quadratic form. Electromechanical damping is considered in this study, and the quadratic non-linearity is approximated using MacLaurin expansion, which enables us to find the law of motion for general case studies using classical methods for dynamic equations and the suitable parameters for the harvester. The oscillations are enabled by applying an initial force, and there is a loss of energy due to the electromechanical damping. A typical numerical application is computed with Matlab 2015 software, and an ODE45 solver is used to verify the accuracy of the method.


Assuntos
Eletrocardiografia , Frequência Cardíaca , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca/fisiologia , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Eletrocardiografia/métodos , Eletrocardiografia/instrumentação , Fontes de Energia Elétrica , Internet das Coisas , Cinética , Telemedicina/instrumentação
4.
Laryngoscope ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016182

RESUMO

INTRODUCTION: Osteotomies are routinely incorporated in rhinoplasty, however, the influence of mass, velocity, kinetic energy (KE), and momentum (p) of the mallet on fracture patterns has not been studied. METHODS: An experimental sledge guillotine setup was designed simulating a mallet strike with adjustable height and mass and 2 mm-thick Sawbone blocks. KE and p were calculated using KE = ½ mass × velocity2 and p = mass × velocity formulas. Fracture lengths and angles were measured. RESULTS: Ten groups with varying mallet masses and drop heights were tested with 10 bones per group. Fracture length positively correlated with KE (R = 0.542, p < 0.001) and p (R = 0.508, p < 0.001). Fracture angle also positively correlated with KE (R = 0.367, p < 0.001) and p (R = 0.329, p < 0.001). In groups with similar KE, osteotomies with higher p (heavier mallet with slower velocity) had greater fracture lengths (29.31 ± 0.68 vs. 27.68 ± 2.12 mm, p = 0.013) but similar fracture angles (p = 0.189). In groups with similar p, osteotomies with higher KE (lighter hammer with faster velocity) had significantly greater fracture lengths (28.28 ± 1.28 vs. 20.45 ± 12.20 mm, p = 0.041) and greater divergent fracture angles (3.13 ± 1.97° vs. 1.40 ± 1.36°, p = 0.031). Regression modeling of the relationship between KE and fracture lengths and angles demonstrated that cubic followed by logarithmic regression models had the best fits. CONCLUSION: Osteotomy fracture patterns positively correlated with the mallet's KE more so than its p, suggesting that the mallet's velocity has an increased impact effect than its mass. Clinically, a heavier mallet with a lower velocity will likely generate a smaller fracture length and fracture angle, indicating a more controlled and ideal fracture. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38984878

RESUMO

OBJECTIVE: Pulse-synchronous tinnitus (PST) has been linked to multiple anatomical variants of the central venous outflow tract (CVOT) including sigmoid sinus (SS) dehiscence and diverticulum. This study investigates flow turbulence, pressure, and wall shear stress along the CVOT and proposes a mechanism that results in SS dehiscence and PST. STUDY DESIGN: Case series. SETTING: Tertiary Academic Center. METHODS: Venous models were reconstructed from computed tomography scans of 3 patients with unilateral PST. Two models for each patient are obtained: a symptomatic and contralateral asymptomatic side. A turbulent model-enabled commercial flow solver was used to simulate the pulsatile blood flow over the cardiac cycle through the models. Fluid flow through the transverse and SS junction was analyzed to observe the velocity, pressure, turbulent kinetic energy (TKE), and shear stress over a simulated cardiac cycle. RESULTS: Fluid flow on the symptomatic side showed increased vorticity in the presence of an SS diverticulum. Higher TKE with periodicity following the cardiac cycle was observed on the symptomatic side, and a sharp increase was observed if SS diverticulum was present. Shear stress was highest near the narrowest segments of the vessel. Pressure was observed to be lower on the symptomatic side at the transverse-SS junction for all 3 patients. CONCLUSION: Computational fluid dynamics modeling of blood flow through the CVOT in PST suggests that low pressure may be the cause of dehiscence, and tinnitus may result from periodic increases in TKE.

6.
Forensic Sci Int ; 361: 112101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896953

RESUMO

Gel blasters are currently imported and marketed as children's toys in Australia. Gel blasters closely imitate the appearance of many genuine firearms of all types and are designed to propel small hydrated gel balls of approximately 7-8 mm in diameter, by means of compressed air or gas. They are considered illegal in all states of Australia except Queensland but these items aren't specifically written into most state firearms legislation. However, to be considered as children's toys, they must not exceed the recommended kinetic energy (KE) of 2500 J/m2 as outlined in the Australian/New Zealand Standard Safety of Toys - Part 1: Safety aspects related to mechanical and physical properties (Safety of Toys ASNZS ISO 8124.1:2019) [1]. The aim of this study was to determine if a range of gel blasters would conform to the Australian & New Zealand Standard and have projectiles with kinetic energy of less than 2500 J/m2. Utilising the testing procedure outlined in ASNZS ISO 8124.1:2019 (Australian/New Zealand Standard Safety of Toys - Part 1: Safety Aspects related to Mechanical and Physical Properties (Safety of Toys ASNZS ISO 8124.1:2019) [1]), a range of gel blasters were tested. In addition, a number of NERF™ toys and airsoft firearms were tested to provide reference between an accepted child's toy and items considered to be a firearm, such as airsoft firearms. A NERF™ toy (commonly referred to as a blaster) fires a foam projectile at very low velocities through direct spring/striker impact to the rear of the dart, battery-powered motorised flywheel, or by compressed air generated by a small piston inside a cylinder. Airsoft firearms are designed to fire hard plastic balls (typically 6 mm in diameter) and can achieve velocities upwards of 90 m/s with the potential to cause injuries to soft tissue. Results showed the KE per unit area of pellets fired from airsoft firearms significantly exceeded the recommended 2500 J/m2 ranging from approximately 10,620 J/m2 to 69,650 J/m2. Twenty of the twenty-four gel blasters tested (83 %) exceeded 2500 J/m2, with values ranging between 2112 J/m2 and 42,645 J/m2. NERF™ toys were found to be notably under 2500 J/m2, ranging from approximately 1230 J/m2 to 2129 J/m2. The results suggest that the majority of gel blasters (items of seizures) tested, currently being imported and marketed as children's toys in Australia, easily exceed 2500 J/m2 as outlined in the ASNZS ISO 8124.1:2019 and are not safe to be marketed and sold as children's toys. Reinforcing the position of most jurisdictions, the Australian Federal Police (AFP) in Canberra made the following statement in 2019: 'ACT (Australian Capital Territory) Policing is reminding the public that replica firearms known as gel blasters are illegal in the ACT'. Taking the results determined throughout this research and the statement by AFP into consideration, gel blasters should not be exempt from control under Firearms Legislation because they are claimed to be toy.


Assuntos
Géis , Jogos e Brinquedos , Humanos , Cinética , Austrália , Desenho de Equipamento , Qualidade de Produtos para o Consumidor
7.
Heliyon ; 10(11): e31859, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841499

RESUMO

Wind is an emerging renewable energy resource, but more useful in cold regions. With the increasing threat of climate change and global warming, the unpredictability of wind energy patterns has been affected. With continual threats from extremes and uncertainties, icing on wind turbines has been noted to grow affecting aerodynamic performance. The effect of turbulence intensity at its impact on aerodynamic performance was numerically done using ANSYS Fluent and FENSAP ICE software. Conditions considered for the study included turbulence intensities, median volume diameter (MVD), liquid water content (LWC), angle of attack, and ambient temperature for 180 min. The study's conditions aimed at providing a wide range of effects covering the in-cloud icing and freezing drizzle. The mass of ice increased with an increase in LWC when it increased from 0.05 g/m3 to 0.3 g/m3, and MVD with 1000 µm compared to 40 µm, but when temperature decreased led to an increase from -1 °C to -15 °C. Increasing the angle of attack led to reduced aerodynamic performance with stall angle occurring at α = 0-18°. An increase in the turbulence intensity from 0.01 % to 50 % resulted in decreased CL/CD.

8.
BMC Med Imaging ; 24(1): 131, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840059

RESUMO

PURPOSE: To evaluate the intracavity left ventricular (LV) blood flow kinetic energy (KE) parameters using four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) in patients with acute myocardial infarction (AMI). METHODS: Thirty AMI patients and twenty controls were examined via CMR, which included cine imaging, late gadolinium enhancement (LGE) and global heart 4D flow imaging. The KE parameters were indexed to LV end-diastolic volume (EDV) to obtain average, systolic and diastolic KE as well as the proportion of LV in-plane KE (%). These parameters were compared between the AMI patients and controls and between the two subgroups. RESULTS: Analysis of the LV blood flow KE parameters at different levels of the LV cavity and in different segments of the same level showed that the basal level had the highest blood flow KE while the apical level had the lowest in the control group. There were no significant differences in diastolic KE, systolic in-plane KE and diastolic in-plane KE between the anterior wall and posterior wall (p > 0.05), only the systolic KE had a significant difference between them (p < 0.05). Compared with those in the control group, the average (10.7 ± 3.3 µJ/mL vs. 14.7 ± 3.6 µJ/mL, p < 0.001), systolic (14.6 ± 5.1 µJ/mL vs. 18.9 ± 3.9 µJ/mL, p = 0.003) and diastolic KE (7.9 ± 2.5 µJ/mL vs. 10.6 ± 3.8 µJ/mL, p = 0.018) were significantly lower in the AMI group. The average KE in the infarct segment was lower than that in the noninfarct segment in the AMI group (49.5 ± 18.7 µJ/mL vs. 126.3 ± 50.7 µJ/mL, p < 0.001), while the proportion of systolic in-plane KE increased significantly (61.8%±11.5 vs. 42.9%±14.4, p = 0.001). CONCLUSION: The 4D Flow MRI technique can be used to quantitatively evaluate LV regional hemodynamic parameters. There were differences in the KE parameters of LV blood flow at different levels and in different segments of the same level in healthy people. In AMI patients, the average KE of the infarct segment decreased, while the proportion of systolic in-plane KE significantly increased.


Assuntos
Ventrículos do Coração , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Estudos de Casos e Controles , Imagem Cinética por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo , Adulto
9.
Comput Biol Med ; 176: 108552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754219

RESUMO

Severe aortic valve stenosis can lead to heart failure and aortic valve replacement (AVR) is the primary treatment. However, increasing prevalence of aortic stenosis cases reveal limitations in current replacement options, necessitating improved prosthetic aortic valves. We investigate flow disturbances downstream of severe aortic stenosis and two bioprosthetic aortic valve (BioAV) designs using advanced energy-based analyses. Three-dimensional high-fidelity fluid-structure interaction simulations have been conducted and a dedicated and novel spectral analysis has been developed to characterise the kinetic energy (KE) carried by eddies in the wavenumber space. In addition, new field quantities, i.e. modal KE anisotropy intensity as well as normalised helicity intensity, are introduced. Spectral analysis shows kinetic energy (KE) decay variations, with the stenotic case aligning with Kolmogorov's theory, while BioAV cases differing. We explore the impact of flow helicity on KE transfer and decay in BioAVs. Probability distributions of modal KE anisotropy unveil flow asymmetries in the stenotic and one BioAV cases. Moreover, an inverse correlation between temporally averaged modal KE anisotropy and normalised instantaneous helicity intensity is noted, with the coefficient of determination varying among the valve configurations. Leaflet dynamics analysis highlights a stronger correlation between flow and biomechanical KE anisotropy in one BioAV due to higher leaflet displacement magnitude. These findings emphasise the role of valve architecture in aortic turbulence as well as its importance for BioAV performance and energy-based design enhancement.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Próteses Valvulares Cardíacas , Hemodinâmica , Modelos Cardiovasculares , Humanos , Valva Aórtica/fisiopatologia , Valva Aórtica/cirurgia , Anisotropia , Hemodinâmica/fisiologia , Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem
10.
Biomed Phys Eng Express ; 10(4)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38788696

RESUMO

Aims and objectives: This research aims to develop a kinetic model that accurately captures the dynamics of nanoparticle impact and penetration into cell membranes, specifically in magnetically-driven drug delivery. The primary objective is to determine the minimum initial kinetic energy and constant external magnetic force necessary for successful penetration of the cell membrane.Model Development: Built upon our previous research on quasi-static nanoneedle penetration, the current model development is based on continuum mechanics. The modeling approach incorporates a finite element method and explicit dynamic solver to accurately represent the rapid dynamics involved in the phenomenon. Within the model, the cell is modeled as an isotropic elastic shell with a hemiellipsoidal geometry and a thickness of 200 nm, reflecting the properties of the lipid membrane and actin cortex. The surrounding cytoplasm is treated as a fluid-like Eulerian body.Scenarios and Results: This study explores three distinct scenarios to investigate the penetration of nanoneedles into cell membranes. Firstly, we examine two scenarios in which the particles are solely subjected to either a constant external force or an initial velocity. Secondly, we explore a scenario that considers the combined effects of both parameters simultaneously. In each scenario, we analyze the critical values required to induce membrane puncture and present comprehensive diagrams illustrating the results.Findings and significance: The findings of this research provide valuable insights into the mechanics of nanoneedle penetration into cell membranes and offer guidelines for optimizing magnetically-driven drug delivery systems, supporting the design of efficient and targeted drug delivery strategies.


Assuntos
Membrana Celular , Simulação por Computador , Sistemas de Liberação de Medicamentos , Membrana Celular/metabolismo , Cinética , Nanopartículas/química , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Magnetismo , Agulhas
11.
J Magn Reson Imaging ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708838

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is associated with increased, and early cardiovascular disease risk. Changes in hemodynamics within the left ventricle (LV) respond to cardiac remodeling. The LV hemodynamics in nondialysis CKD patients are not clearly understood. PURPOSE: To use four-dimensional blood flow MRI (4D flow MRI) to explore changes in LV kinetic energy (KE) and the relationship between LV KE and LV remodeling in CKD patients. STUDY TYPE: Retrospective. POPULATION: 98 predialysis CKD patients (Stage 3: n = 21, stage 4: n = 21, and stage 5: n = 56) and 16 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession (SSFP) cine sequence, 4D flow MRI with a fast field echo sequence, T1 mapping with a modified Look-Locker SSFP sequence, and T2 mapping with a gradient recalled and spin echo sequence. ASSESSMENT: Demographic characteristics (age, sex, height, weight, blood pressure, heart rate, aortic regurgitation, and mitral regurgitation) and laboratory data (eGFR, Creatinine, hemoglobin, ferritin, transferrin saturation, potassium, and carbon dioxide bonding capacity) were extracted from patient records. Myocardial T1, T2, LV ejection fraction, end diastolic volume (EDV), end systolic volume, LV flow components (direct flow, delayed ejection, retained inflow, and residual volume) and KE parameters (peak systolic, systolic, diastolic, peak E-wave, peak A-wave, E/A ratio, and global) were assessed. The KE parameters were normalized to EDV (KEiEDV). Parameters were compared between disease stage in CKD patients, and between CKD patients and healthy controls. STATISTICAL TESTS: Differences in clinical and imaging parameters between groups were compared using one-way ANOVA, Kruskal Walls and Mann-Whitney U tests, chi-square test, and Fisher's exact test. Pearson or Spearman's correlation coefficients and multiple linear regression analysis were used to compare the correlation between LV KE and other clinical and functional parameters. A P-value of <0.05 was considered significant. RESULTS: Compared with healthy controls, peak systolic (24.76 ± 5.40 µJ/mL vs. 31.86 ± 13.18 µJ/mL), systolic (11.62 ± 2.29 µJ/mL vs. 15.27 ± 5.10 µJ/mL), diastolic (7.95 ± 1.92 µJ/mL vs. 13.33 ± 5.15 µJ/mL), peak A-wave (15.95 ± 4.86 µJ/mL vs. 31.98 ± 14.51 µJ/mL), and global KEiEDV (9.40 ± 1.64 µJ/mL vs. 14.02 ± 4.14 µJ/mL) were significantly increased and the KEiEDV E/A ratio (1.16 ± 0.67 vs. 0.69 ± 0.53) was significantly decreased in CKD patients. As the CKD stage progressed, both diastolic KEiEDV (10.45 ± 4.30 µJ/mL vs. 12.28 ± 4.85 µJ/mL vs. 14.80 ± 5.06 µJ/mL) and peak E-wave KEiEDV (15.30 ± 7.06 µJ/mL vs. 14.69 ± 8.20 µJ/mL vs. 19.33 ± 8.29 µJ/mL) increased significantly. In multiple regression analysis, global KEiEDV (ß* = 0.505; ß* = 0.328), and proportion of direct flow (ß* = -0.376; ß* = -0.410) demonstrated an independent association with T1 and T2 times. DATA CONCLUSION: 4D flow MRI-derived LV KE parameters show altered LV adaptations in CKD patients and correlate independently with T1 and T2 mapping that may represent myocardial fibrosis and edema. TECHNICAL EFFICACY: Stage 3.

12.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610349

RESUMO

Seismocardiography (SCG), a method for measuring heart-induced chest vibrations, is gaining attention as a non-invasive, accessible, and cost-effective approach for cardiac pathologies, diagnosis, and monitoring. This study explores the integration of SCG acquired through smartphone technology by assessing the accuracy of metrics derived from smartphone recordings and their consistency when performed by patients. Therefore, we assessed smartphone-derived SCG's reliability in computing median kinetic energy parameters per record in 220 patients with various cardiovascular conditions. The study involved three key procedures: (1) simultaneous measurements of a validated hardware device and a commercial smartphone; (2) consecutive smartphone recordings performed by both clinicians and patients; (3) patients' self-conducted home recordings over three months. Our findings indicate a moderate-to-high reliability of smartphone-acquired SCG metrics compared to those obtained from a validated device, with intraclass correlation (ICC) > 0.77. The reliability of patient-acquired SCG metrics was high (ICC > 0.83). Within the cohort, 138 patients had smartphones that met the compatibility criteria for the study, with an observed at-home compliance rate of 41.4%. This research validates the potential of smartphone-derived SCG acquisition in providing repeatable SCG metrics in telemedicine, thus laying a foundation for future studies to enhance the precision of at-home cardiac data acquisition.


Assuntos
Doenças Cardiovasculares , Smartphone , Humanos , Reprodutibilidade dos Testes , Fenômenos Físicos , Benchmarking , Doenças Cardiovasculares/diagnóstico
13.
Nano Lett ; 24(17): 5174-5181, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587459

RESUMO

Characteristic properties of secondary electrons emitted from irradiated two-dimensional materials arise from multi-length and multi-time-scale relaxation processes that connect the initial nonequilibrium excited electron distribution with their eventual emission. To understand these processes, which are critical for using secondary electrons as high-resolution thermalization probes, we combine first-principles real-time electron dynamics with irradiation experiments. Our data for cold and hot proton-irradiated graphene show signatures of kinetic and potential emission and generally good agreement for electron yields between experiment and theory. The duration of the emission pulse is about 1.5 fs, which indicates high time resolution when used as a probe. Our newly developed method to predict kinetic energy spectra shows good agreement with electron and ion irradiation experiments and prior models. We find that the lattice temperature significantly increases secondary electron emission, whereas electron temperature has a negligible effect.

14.
Heliyon ; 10(2): e24765, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304830

RESUMO

The utilization of water energy through the Single Electrode Droplet-Based Electricity Generator (SE-DEG) represents a universal and high-efficiency method for water energy harvesting. Previous research has extensively elucidated the working principle of SE-DEG based on bulk effect. However, scant attention has been paid to the investigation of the electrical characteristics surrounding the SE-DEG. Remarkably, the electrical characteristics around the SE-DEG can be exploited to generate electricity and harvest corresponding energy. Here we evaluate the electrical characteristics around the SE-DEG by arranging extra electrodes. An interesting phenomenon is found that, on the premise of no contact between extra electrodes and the droplet, there is opposite electricity output from extra electrodes synchronously when the droplet contacts on the PTFE film and SE-DEG electrode and outputs the electricity. This phenomenon is comprehensively explained and verified from working mechanism, the impacts of different arrangements and the array design of extra electrodes. Significantly, utilizing the electrical characteristics could harvest additional kinetic energy with extra electrodes in SE-DEG. This investigation is expected to provide new insights into the future harnessing of water kinetic energy within the SE-DEG framework.

15.
ACS Appl Mater Interfaces ; 16(7): 8707-8716, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346080

RESUMO

Two-dimensional (2D) metal organic framework (MOF) or metalloporphyrin nanosheets with a stable metal-N4 complex unit present the metal as a single-atom catalyst dispersed in the 2D porphyrin framework. First-principles calculations on the 3d-transition metals in M-TCPP are investigated in this study for their surface-dependent electronic properties including work function and d-band center. Crystal orbital Hamiltonian population (-pCOHP) analysis highlights a higher contribution of the bonding state in the M-N bond and antibonding state in the N-N bond to be essential for N-N bond activation. A linear relationship between ΔGmax and surface electronic properties, N-N bond strength, and Bader charge has been found to influence the rate-determining potential for nitrogen reduction reaction (NRR) in M-TCPP MOFs. 2D Ti-TCPP MOF, with a kinetic energy barrier of 1.43 eV in the final protonation step of enzymatic NRR, shows exclusive NRR selectivity over competing hydrogen reduction (HER) and nitrogenous compounds (NO and NO2). Thus, Ti-TCPP MOF with an NRR limiting potential of -0.35 V in water solvent is proposed as an attractive candidate for electrocatalytic NRR.

16.
Talanta ; 272: 125799, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422903

RESUMO

The effect of ion kinetic energy on gas phase ion reactivity with ICP-MS/MS was investigated in order to explore tuning strategies for interference removal. The collision/reaction gases CO2, N2O and O2 were used to observe the ion product distribution for 48 elements using an Agilent tandem ICP-MS (ICP-MS/MS) as a function of reaction gas flow rate (pressure) and ion kinetic energy. The kinetic energy of the incident ion was varied by adjusting the octopole bias (Voct). The three gases all form oxides (MO+) as the primary product with differing reaction enthalpies that result in distinct differences in the ion energies required for reaction with product ion distributions that vary with Voct. Consequently, by varying the ion kinetic energy (i.e., Voct), differences in interference reactivity can be used to achieve maximum separation. Three practical application examples were reported to demonstrate how the ion kinetic energy can be varied to achieve the ideal ion product distribution for interference resolution: CO2 for the removal of 238U in Pu analyses, CO2 for the removal of 40Ar16O vs. 56Fe, and O2 for the removal of Sm in Eu analyses, analogous to Pu/Am. The results demonstrate how the starting ion energy defined by Voct is an important factor to fully leverage the utility of any given reaction gas to remove interferences in the mass spectrum using ICP-MS/MS.

17.
Sci Total Environ ; 922: 171264, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417507

RESUMO

Coastal lagoons are among the most productive marine ecosystems in the world. Annual primary production varies from 50 to > 500 g C m-2 year-1, being of the same order of magnitude as that of the upwelling areas. Many lagoons lie within the range of eutrophic (300-500 g C m-2 year-1) or hypereutrophic (> 500 g C m-2 year-1) conditions. The high productivity of coastal lagoons makes them subject of exploitation by many marine fishes and invertebrates, that use them as nursery areas and feeding grounds during their early life cycle phases, and most lagoons support important fisheries or maintain aquaculture exploitations. The high levels of their biological production can be explained by some of their common features as shallowness and the strong influence of terrestrial systems. Shallowness favors that the photic zone extends to the lagoon bottom and that wind can promote the resuspension of nutrients and organisms. The interaction with land also introduces significant amounts of nutrients. However, trophic variables can explain < 43 % of the fishing yields, and further than the trophic status of the lagoons, several works showed that the biological productivity of coastal lagoons can be explained by their geomorphological features such as the positive influence of shoreline development and the negative influence of depth. Using the Mar Menor lagoon as a case study, we propose that although nutrient inputs and light can be limiting factors for photosynthetic based productivity, increasing fishing yield up to a certain limit, the productivity of lagoons is mainly promoted by more general forces associated to physical and chemical gradients.


Assuntos
Ecossistema , Caça , Animais , Invertebrados , Aquicultura , Pesqueiros
18.
ISA Trans ; 147: 288-303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388296

RESUMO

The issues faced by hybrid electric vehicles (HEVs) include locating and managing free energy to preserve resource dynamics and constraints while preserving prolonged autonomy. This study assessed a hybrid electric vehicle (HEV) equipped with a fuel cell (FC), battery, direct current generators (DCGs), and supercapacitor (SC) to meet the power needs of an automobile utilizing variable power converters. This study examines four HEV energy management strategies (EMSs), increasing clean environmental power penetration by utilizing the HEV's kinetic energy, as a new contribution. Strategies for Proportional-Integral (PI), State-Machine (SM), Artificial Neural Network (ANN), and Adaptive Neural Fuzzy Inference System (ANFIS) EMSs are discussed. In addition to implementing direct torque control with a space vector modulation-based ANFIS controller (ANFIS-DTC-SVM), this study proposes to insert DCGs in the front wheels of HEVs for free energy production. Simulations of EMSs yielded approximative findings, achieving a 22.2 (%) free-exploited kinetic energy. The ANN-based EMS surpassed the competition, yielding the highest energy efficiency 98.2 (%) and the lowest fuel consumption 48.68 (SI). As a result of maximizing battery utilization and limiting fuel consumption, the examined HEV's dependability and stability were confirmed and reached, highlighting the importance of kinetic energy.

19.
Sci Rep ; 14(1): 4965, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424203

RESUMO

In this paper, numerical simulations of single-jet impingement cooling and double-jet impingement cooling processes of heated L-shaped steel are carried out using the VOF model. The SIMPLEC pressure-velocity coupling algorithm and realizable k-ε model are used for the solution. The effects of jet position, water flow, and jet distance in the single-jet condition are analyzed in the simulations. The distributions of impact pressure, turbulence kinetic energy, and Nusselt number were obtained, as well as the variation of the peak values of these three factors with the jet position, water flow, and jet distance. The water flow rate is 3-11 L/min, and the jet distance is 5-25 cm. The effect of the distance between the two nozzles on the jet cooling uniformity under the dual jet condition was also analyzed. The distance between the two nozzles was 15-45 mm. The results showed that the variation of water flow rate had a greater effect on the ability of jet cooling compared with the jet position and jet distance, and the heat transfer efficiency also increased gradually with the increase of water flow, but the increased rate of heat transfer efficiency decreased gradually. When the flow rate increased from 3 to 11 L/min, the maximum instantaneous cooling rates at 1/4 of the thickness of the short side upper side, long side upper side, short side lower side, and long side lower side positions increased by 38.9%, 48.5%, 48.2%, and 32.9%, respectively. To ensure that the jet does not shift, the jet distance should be less than or equal to 10 cm. In the case of the double jet, the nozzle distance is 1.5 cm, and the cooling uniformity of the cooling area between the two nozzles is better. The peak Nusselt number in the cooling area of each part under the double jet cooling condition increased by 5%, 9.4%, 10.2%, and 13.3%, respectively, compared with the single jet.

20.
J Forensic Sci ; 69(2): 400-414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38251809

RESUMO

This research implements a fractographic approach to investigate the relationships between kinetic energy, firearm-to-target distance, and various aspects of fracture behavior in gunshot trauma. Gunshot experiments were performed on pig scapulae (n = 30) using three firearms generating different muzzle (initial) kinetic energies, including a 0.32 pistol (103 J), 0.40 pistol (492 J), and 0.308 rifle (2275 J). Specimens were shot from two distances: 10 cm (n = 15) and 110 cm (n = 15). Features evaluated in fractographic analysis such as cone cracks, radiating cracks, crack branching points, and circumferential cracks could be easily identified and measured in flat bones and allowed for statistical comparison of crack propagation behavior under different impact conditions. Higher-energy bullets produced more radiating cracks, more crack branching points, and longer fracture lengths than lower-energy bullets. Distance had no significant effect on fracture morphology at the distances tested. That quantitative measures of crack propagation varied with energy affirms that kinetic energy transfer is important in determining the nature and extent of fracture in gunshot wounds and suggests it may be possible to infer relatively high- versus relatively low-energy transfer using these features. Ranges obtained with the three firearms exhibited considerable overlap, however, indicating that other variables such as bullet caliber, mass, and construction influence the efficiency of energy transfer from bullet to bone. Therefore, fracture morphology cannot be used to identify a specific firearm or to directly reconstruct the muzzle (initial) kinetic energy in forensic cases.


Assuntos
Armas de Fogo , Fraturas Ósseas , Ferimentos por Arma de Fogo , Animais , Suínos , Balística Forense , Osso e Ossos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA