Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204843

RESUMO

In classical guitar acoustic spectra, the lowest frequency body mode's amplitude often significantly surpasses that of the string overtones. However, the characteristics of the body mode have not been systematically utilized to quantitatively represent the timbre of classical guitars. In this study, we propose a quantitative method for describing the body mode, which can effectively differentiate the timbre of classical guitars. Our approach involves three key parameters presented in a three-dimensional space, as follows: the frequency and quality factors of the body mode, along with the amplitude ratio of the plucked string note to the body mode in the soundboard's vibration spectrum. This representation allows for the visualization, quantitative comparison, and classification of the body mode note and damping properties across classical guitars. The differences in body mode among guitars can be analyzed quantitatively using Euclidean distance.

2.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610270

RESUMO

The robotic drilling of assembly holes is a crucial process in aerospace manufacturing, in which measuring the normal of the workpiece surface is a key step to guide the robot to the correct pose and guarantee the perpendicularity of the hole axis. Multiple laser displacement sensors can be used to satisfy the portable and in-site measurement requirements, but there is still a lack of accurate analysis and layout design. In this paper, a simplified parametric method is proposed for multi-sensor normal measurement devices with a symmetrical layout, using three parameters: the sensor number, the laser beam slant angle, and the laser spot distribution radius. A normal measurement error distribution simulation method considering the random sensor errors is proposed. The measurement error distribution laws at different sensor numbers, the laser beam slant angle, and the laser spot distribution radius are revealed as a pyramid-like region. The influential factors on normal measurement accuracy, such as sensor accuracy, quantity and installation position, are analyzed by a simulation and verified experimentally on a five-axis precision machine tool. The results show that increasing the laser beam slant angle and laser spot distribution radius significantly reduces the normal measurement errors. With the laser beam slant angle ≥15° and the laser spot distribution radius ≥19 mm, the normal measurement error falls below 0.05°, ensuring normal accuracy in robotic drilling.

3.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571541

RESUMO

The section detection of the pavement is the data basis for measuring the road smoothness, rutting, lateral slope, and structural depth. The detection of the Pavement-Section includes longitudinal-section inspection and cross-section inspection. In this paper, based on multiple laser displacement sensors, fused accelerometers and attitude sensors, and using vehicle-mounted high-speed detection, we design a sensor-fused pavement section data acquisition method, establish the relevant mathematical model, and realize the automatic acquisition of pavement longitudinal and transverse sections. The acceleration sensor is filtered to improve the accuracy of data acquisition, and the error of the detection system is calculated and analyzed. Through the actual measurement, the vehicle-mounted high-speed pavement profile detection method adopted in this paper can not only accurately detect the profile of the pavement profile, but also improve the detection efficiency, providing a cost-effective detection mode for road surface detection.

4.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36850356

RESUMO

Laser displacement sensors are widely used in the aviation industry for the purpose of surface normal measurements. The measurement of a surface normal depends on prior knowledge of the poses and positions of the sensors, which are obtained through calibration. This paper introduces a new parameter to the traditional calibration procedure, to reduce the calibration error, and explores the factors affecting calibration using the Monte Carlo method. In the experiment, the normal measurement error of the probe consisted of four sensors after calibration was less than 0.1∘, which satisfied the established requirements. This paper indicates the boundary conditions for a successful calibration and validates the proposed method, which provides a new method for the pose and position calibration of laser displacement sensors and other similar sensors.

5.
Clin Oral Implants Res ; 32(11): 1341-1356, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34403162

RESUMO

OBJECTIVE: The aim of this study was to analyze the stability changes in immediately loaded implants by using an in vivo quantitative measurement of micromotion under functional dynamic loading and to verify the sensitivity of Resonance Frequency Analysis (RFA) as compared to that of actual micromotion. MATERIALS AND METHODS: The micromotions of immediately loaded implants placed in the tibia of 11 rabbits were monitored using a laser displacement sensor. Functional dynamic loading forces were applied 5 days a week for 6 weeks. The implant stability quotient (ISQ) was monitored using RFA. RESULTS: The micromotion of the almost-loaded implants increased to peak values the day after loading was started and subsequently reached a plateau gradually. The ISQ changes in the loaded implants closely correlated with the alterations of the actual micromotion (r = -0.98, p < .01). Although the ISQ value itself correlated with the measured micromotion at the time of initial fixation (r = 0.73, p < .05), it did not correlate with the micromotion of the implant that acquired integration. No close correlation was observed between the ISQ and the histomorphometrical data. CONCLUSION: The immediately loaded implants showed the lowest stability immediately after the start of loading, which gradually increased thereafter. RFA is considered a useful method for examining stability changes and initial stability; however, it cannot determine the absolute magnitude of the stability after integration.


Assuntos
Implantação Dentária Endóssea , Implantes Dentários , Animais , Lasers , Osseointegração , Coelhos , Análise de Frequência de Ressonância , Vibração
6.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430406

RESUMO

Three-dimensional (3D) zigzag-line welding seams are found extensively in the manufacturing of marine engineering equipment, heavy lifting equipment, and logistics transportation equipment. Currently, due to the large amount of calculation and poor real-time performance of 3D welding seam detection algorithms, real-time tracking of 3D zigzag-line welding seams is still a challenge especially in high-speed welding. For the abovementioned problems, we proposed a method for the extraction of the pose information of 3D zigzag-line welding seams based on laser displacement sensing and density-based clustering point cloud segmentation during robotic welding. after thee point cloud data of the 3D zigzag-line welding seams was obtained online by the laser displacement sensor, it was segmented using theρ-Approximate DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm. In the experiment, high-speed welding was performed on typical low-carbon steel 3D zigzag-line welding seams using gas metal arc welding. The results showed that when the welding velocity was 1000 mm/min, the proposed method obtained a welding seam position detection error of less than 0.35 mm, a welding seam attitude estimation error of less than two degrees, and the running time of the main algorithm was within 120 ms. Thus, the online extraction of the pose information of 3D zigzag-line welding seams was achieved and the requirements of welding seam tracking were met.

7.
Sci Prog ; 103(1): 36850419877727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31829883

RESUMO

In order to perceive the state of the process of reverse thinning spinning of the ultra-thin wall tube, a monitoring method based on drum shape is proposed. The method uses the non-uniform rational basis spline curve fitting method based on the moving least squares method to reconstruct the outer contour data of the spinning zone collected by the line laser displacement sensor and extracts the outer contour curve of the drum zone according to the spinning characteristics. Then, the dynamic time warping algorithm is used to analyze the similarity between the current and previous drum curves in order to judge whether the current spinning state is abrupt or not. At the same time, the current spinning state is judged by combining the curvature comb of the drum curve, the number of convex areas of the drum curve, the drum ratio, and the drum change trend. Finally, the drum shape detection and the spinning condition monitoring experiments are carried out. The experimental results show that this method can obtain the outer contour shape of the drum section at one time, and the accuracy is 0.05 mm with respect to the measured value of the three coordinates. The method can realize the visual monitoring of the abrupt change of the spinning process by judging the similarity of the drum curve at the adjacent time under different spinning states. In the state of instability, the curvature comb of the drum curve is discontinuous, the curve is G0 continuous, the drum ratio exceeds the critical drum ratio 2.0, and there is more than one convex region, which realizes the monitoring of spinning state more accurately. The experimental results verify the correctness of the proposed method and prove that the method can be used as a new method to judge the stability of the ultra-thin-walled cylinder spinning process.

8.
Sensors (Basel) ; 19(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756906

RESUMO

Great length, large weight and other factors may cause difficulty in measuring the profile accuracy of the double-headed screw rotor. To solve this problem, an on-machine measuring system based on a laser-displacement sensor (LDS) was designed and implemented in this paper by taking an LXK100 four-axis whirlwind milling machine as the carrier. To improve the measurement accuracy of the system, the generalized variable-structural-element morphological method, polynomial interpolation algorithm and ellipse fitting method were first combined to realize the rapid subpixel centroid extraction from a noise-containing spot image, thus improving the data acquisition accuracy of the LDS, and then the hybrid method was experimentally verified. Next, a wavelet threshold function with high-order differentiability and adaptive wavelet coefficient contractility was constructed based on the hyperbolic tangent function, so as to inhibit the disturbance from random errors and preserve real profile information, and this method was simulated and verified. Subsequently, a smoothing algorithm for point cloud data was proposed based on the Lagrange multiplier method to avoid the defect of the piecewise curve-fitting method, that is, function continuity and differentiability could not be satisfied at piecewise points. Finally, the profile accuracy was calculated in real time according to the data reconstruction result and the machining quality was judged. The measurement experiment of the double-headed screw rotor indicates that the proposed on-machine measuring system can complete the profile accuracy measurement for a screw pitch within 39.7 s with measurement accuracy reaching ±8 µm, and the measurement uncertainties of the major axis, minor axis and screw pitch are 0.72 µm, 0.69 µm and 1.24 µm, respectively. Therefore, the measurement accuracy and efficiency are both remarkably improved.

9.
Sensors (Basel) ; 19(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013761

RESUMO

A 3-PRR (three links with each link consisting of a prismatic pair and two rotating pairs) parallel platform was designed for application in a vacuum environment. To meet the requirement of high tracking accuracy of the 3-PRR parallel platform, a full closed-loop control precision tracking system with laser displacement sensors and linear grating encoders was analysed and implemented. Equally-spaced laser displacement sensors and linear grating encoders were adopted not only for measurement but also for feedback control. A feed-forward control method was applied for comparison before conducting the closed-loop feedback control experiments. The closed-loop control experiments were conducted by adopting the PI (proportion and integration) feedback control and RBF (radial basis function) neural network control algorithms. The experimental results demonstrate that the feed-forward control, PI feedback control, and RBF neural-network control algorithms all have a better control effect than that of semi-closed-loop control, which proves the validity of the designed full closed-loop control system based on the combination of laser displacement sensors and linear grating encoders.

10.
Sensors (Basel) ; 18(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332810

RESUMO

To enhance the perpendicularity accuracy in the robotic drilling system, a normal sensor calibration method is proposed to identify the errors of the zero point and laser beam direction of laser displacement sensors simultaneously. The procedure of normal adjustment of the robotic drilling system is introduced firstly. Next the measurement model of the zero point and laser beam direction on a datum plane is constructed based on the principle of the distance measurement for laser displacement sensors. An extended Kalman filter algorithm is used to identify the sensor errors. Then the surface normal measurement and attitude adjustments are presented to ensure that the axis of the drill bit coincides with the normal at drilling point. Finally, simulations are conducted to study the performance of the proposed calibration method and experiments are carried out on a robotic drilling system. The simulation and experimental results show that the perpendicularity of the hole is within 0.2°. They also demonstrate that the proposed calibration method has high accuracy of parameter identification and lays a basis for high-precision perpendicularity accuracy of drilling in the robotic drilling system.

11.
Sensors (Basel) ; 18(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652836

RESUMO

The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 µm and repeatability limit ≤ 4 µm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.

12.
Sensors (Basel) ; 17(4)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406448

RESUMO

Mass measurement of more than 500 kg on an electronic mass comparator has no better repeatability and linearity of measurement for meeting the calibration requirement of over class F1 weights from pharmacy and power generation plants. For this purpose, a new 2000 kg mechanical balance was developed by the National Institute of Metrology (NIM). The advantages of measurement of more than 500 kg on a new 2000 kg mechanical balance are introduced in the paper. In order to obtain high measurement uncertainty, four vertical forces of two sides of beam are measured and used as reference for adjustment of the beam position. Laser displacement sensors in the indication system are more effective for decreasing reading errors caused by human vision. To improve the repeatability and sensitivity of the equipment, a synchronous lifting control is designed for synchronously lifting the beam ends along the vertical direction. A counterweight selection system is developed to get any combination of weights in a limited space. The sensitivity of the new mechanical balance for 2000 kg is more than 1.7 parts in 10-4 rad/g. The extended uncertainties for the mechanical balance of 500 kg, 1000 kg and 2000 kg are 0.47 g, 1.8 g and 3.5 g respectively.

13.
Sensors (Basel) ; 17(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327499

RESUMO

A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod's rotation angles, so all diameters of coaxial holes can be calculated by sensors' values. While revolving, the changing angles of each sensor's laser beams are approximately equal in the rod's radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 µm is achieved by 20 µm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS's mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use.

14.
Sensors (Basel) ; 17(2)2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28165432

RESUMO

The laser triangulation method is one of the most advanced methods for large inner diameter measurement. Our research group proposed a kind of inner diameter measuring device that is principally composed of three laser displacement sensors known to be fixed in the same plane measurement position. It is necessary to calibrate the direction of the laser beams that are emitted by laser displacement sensors because they do not meet the theoretical model accurately. For the purpose of calibrating the direction of laser beams, a calibration method and mathematical model were proposed. The inner diameter measuring device is equipped with the spindle of the machine tool. The laser beams rotate and translate in the plane and constitute the rotary rays which are driven to scan the inner surface of the ring gauge. The direction calibration of the laser beams can be completed by the sensors' distance information and corresponding data processing method. The corresponding error sources are analyzed and the validity of the method is verified. After the calibration, the measurement error of the inner diameter measuring device reduced from ± 25 µ m to ± 15 µ m and the relative error was not more than 0.011%.

15.
Sensors (Basel) ; 15(6): 12782-801, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26039420

RESUMO

This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 µm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.

16.
Int J Med Robot ; 9(4): 433-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280765

RESUMO

BACKGROUND: An online non-contact measurement system using a laser displacement sensor was developed for obtaining the vibration amplitude of spinal cord and hard tissue. METHODS: The discrete wavelet transform was used to extract the distinctive features of tissue vibration signals. The spinal cord and spinal cancellous bone can be discriminated by the comparison of wavelet energy over a characteristic scale. We also derived the integro-differential equation of motion to describe the spinal cord vibration excited by the motion of bone. RESULTS: Experimental results show that the method works well in identifying spinal cord and bone. However, available viscoelastic constants cannot describe the high-frequency features of spinal cord. CONCLUSIONS: The examined issue of tissue vibration due to the operation power device is a significant problem. The proposed method can be used by a surgery robot, and then spinal surgery may greatly benefit from the enhanced safety of robotics.


Assuntos
Lasers , Oscilometria/instrumentação , Medula Espinal/fisiopatologia , Medula Espinal/cirurgia , Cirurgia Assistida por Computador/instrumentação , Análise de Ondaletas , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas In Vitro , Oscilometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos , Suínos , Vibração
17.
Sensors (Basel) ; 12(5): 5824-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778615

RESUMO

A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 µm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 µm within a diameter of 600 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA