Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065358

RESUMO

This study focused on effective methods of laser engraving treatment (LET), plasma spraying, and resin pre-coating (RPC) to manufacture the reinforced adhesive joints of titanium alloy and carbon fiber-reinforced polymer (TA-CFRP) composites. The combined treatments contributed to the creation of a better adhesive bonding condition and offer a vertical gap between circular protrusions to form epoxy pins and carbon nanotube (CNT)-reinforced epoxy pins. The bonding strength of the TA-CFRP composite was reinforced by 130.6% via treatments with a twice-engraving unit of 0.8 mm, plasma spraying, and RPC. The original debonding failure on the TA surface was changed into the cohesive failure of the epoxy adhesive and delamination-dominated failure of the CFRP panel. Overall, laser engraving has been confirmed as an effective and controllable treatment method to reinforce the bonding strength of the TA-CFRP joint combined with plasma spraying and RPC. It may be considered as an alternative in industry for manufacturing high-performance metal-CFRP composites.

2.
Adv Mater ; 36(33): e2407138, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887139

RESUMO

MXene aerogels, known for good electrical properties, offer immense potential for the development of high-sensitivity pressure sensors. However, the intrinsic challenges stemming from the poor self-assembly capability and high hydrophilicity of MXene impede the natural drying process of MXene-based hydrogels, thereby constraining their application on a large scale in sensor technology. Herein, a graphene-assisted approach aimed at modulating the hydrophobicity and enhancing framework strength of MXene through a well-designed prefreezing technique incorporating 3D spherical macroporous structures is proposed. This synergistic strategy enables the fabrication of naturally dried MXene aerogels across various size scales. Moreover, the integration of 3D spherical macroporous structures improves elasticity and electrical responsiveness of aerogels. Consequently, the aerogel sensor exhibits great performances, including high sensitivity (1250 kPa-1), low detection limit (0.4 Pa), wide frequency response range (0.1-8 Hz), and excellent stability (1000 cycles). This sensor proves adept at monitoring pressure signals ranging from lightweight paper to human motion. Additionally, the application of customized laser engraving endows aerogels with unique functionalities, such as compressibility and immunity to strain, stretchability and resistance to compression, as well as wind detection. Thus, the proposed approach holds significant promise as a scalable method for the mass production of aerogels with versatile applications.

3.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793172

RESUMO

A perfluoropolyether (PFPE)-based microfluidic device with cross-junction microchannels was fabricated with the purpose of producing uniform droplets. The microchannels were developed using CO2 laser engraving. PFPE was chosen as the main material because of its excellent solvent resistance. Polyethylene glycol diacrylate (PEGDA) was mixed with PFPE to improve the hydrophilic properties of the inner surface of the microchannels. The microchannels of the polydimethylsiloxane microfluidic device had a blackened and rough surface after laser engraving. By contrast, the inner surface of the microchannels of the PFPE-PEGDA microfluidic device exhibited a smooth surface. The lower power and faster speed of the laser engraving resulted in the development of microchannels with smaller dimensions, less than 30 µm in depth. The PFPE and PFPE-PEGDA microfluidic devices were used to produce uniform water and oil droplets, respectively. We believe that such a PFPE-based microfluidic device with CO2-laser-engraved microchannels can be used as a microfluidic platform for applications in various fields, such as biological and chemical analysis, extraction, and synthesis.

4.
J Dent Sci ; 19(1): 32-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303863

RESUMO

Background/purpose: Polyetheretherketone (PEEK) is a highly sought-after thermoplastic due to its exceptional mechanical properties and biocompatibility. However, bonding PEEK to indirect composite resin (ICR) or denture-based resin (DBR) can be challenging. Laser engraving technology has shown potential to improve bonding for other materials; thus, this study aims to evaluate its effectiveness for PEEK. Materials and methods: The experiment involved preparing ingot-shaped PEEK samples, which were then categorized into four groups based on the treatment method employed: without treatment, air abrasion, sulfuric acid etching, and laser engraving (LS). Subsequently, the samples were bonded to ICR or DBR, and their shear bond strength (SBS) was tested with or without thermocycling using a universal testing machine. Furthermore, the failure mode was observed, with statistical analyses conducted to compare the results. Results: The grid-like microslit structure of LS group displayed the highest SBS for bonding PEEK to ICR or DBR (P < 0.05). During the bonding of PEEK to ICR, resin residue and penetration into the microslits were frequently observed in the LS group, indicating cohesive failure. However, when PEEK was bonded to DBR, mixture failure was frequently observed without thermocycling. After thermocycling, only the LS group showed cohesive failure, while the majority of specimens exhibited mixture failure. Conclusion: Laser engraving significantly improves the SBS between PEEK and both ICR and DBR. Furthermore, it was observed that resin had penetrated the microslits, indicating that laser engraving has great potential as a surface treatment method.

5.
Materials (Basel) ; 16(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834713

RESUMO

Hybrid metal matrix composites (HMMCs) are a special type of material, possessing combined properties that belong to alloys and metals according to market demands. Therefore, they are used in different areas of industry and the properties of this type of material are useful in engineering applications, e.g., in aircraft engines and electrotechnical parts. The structure of the material requires a number of scientific studies to develop an appropriate processing technology. The paper presents the susceptibility of material from the HMMCs group with the EN AC-44300 (AISi12(Fe)) aluminum alloy matrix with a two-component reinforcement made of alumina particles (AP) and aluminosilicate fibers (AF) to thermal treatment with a laser beam. During this process, laser engraving of the researched material with variable beam power Pav and variable speed of the laser head vl were carried out. A metallographic analysis of the material was carried out. After laser engraving, surface structural changes of the material were determined. The properties of the surface geometric structure of processed material were also examined. Presented studies concern laser engraving on the surface of composite from the HMMC group, which was made by vacuum infiltration. Thanks to this method, it is possible both to produce shaped and precise composite castings with saturated reinforcement and to consequently minimize machining losses. Metal-ceramic composites from the HMMC group are hard-to-machine materials which create problems during machining. The aim of these studies was to develop a laser engraving technology with Al matrix composite with the addition of Al2O3 particles and aluminosilicate fibers, which constitute the reinforcement. The focus was on the selection of engraving parameters (beam power and speed of movement of the laser head). Clear examples of engraving, suitable for macro-assessment, were obtained with minimal change in the initial surface structure of the composite.

6.
Polymers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571185

RESUMO

The significant potential of flexible sensors in various fields such as human health, soft robotics, human-machine interaction, and electronic skin has garnered considerable attention. Capacitive pressure sensor is popular given their mechanical flexibility, high sensitivity, and signal stability. Enhancing the performance of capacitive sensors can be achieved through the utilization of gradient structures and high dielectric constant media. This study introduced a novel dielectric layer, employing the BaTiO3-PDMS material with a gradient micro-cones architecture (GMCA). The capacitive sensor was constructed by incorporating a dielectric layer GMCA, which was fabricated using laser engraved acrylic (PMMA) molds and flexible copper-foil/polyimide-tape electrodes. To examine its functionality, the prepared sensor was subjected to a pressure range of 0-50 KPa. Consequently, this sensor exhibited a remarkable sensitivity of up to 1.69 KPa-1 within the pressure range of 0-50 KPa, while maintaining high pressure-resolution across the entire pressure spectrum. Additionally, the pressure sensor demonstrated a rapid response time of 50 ms, low hysteresis of 0.81%, recovery time of 160 ms, and excellent cycling stability over 1000 cycles. The findings indicated that the GMCA pressure sensor, which utilized a gradient structure and BaTiO3-PDMS material, exhibited notable sensitivity and a broad linear pressure range. These results underscore the adaptability and viability of this technology, thereby facilitating enhanced flexibility in pressure sensors and fostering advancements in laser manufacturing and flexible devices for a wider array of potential applications.

7.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513212

RESUMO

In recent years, laser engraving has received widespread attention as a convenient, efficient, and programmable method which has enabled high-quality porous graphene to be obtained from various precursors. Laser engraving is often used to fabricate the dielectric layer with a microstructure for capacitive pressure sensors; however, the usual choice of electrodes remains poorly flexible metal electrodes, which greatly limit the overall flexibility of the sensors. In this work, we propose a flexible capacitive pressure sensor made entirely of thermoplastic polyurethane (TPU) and laser-induced graphene (LIG) derived from wood. The capacitive pressure sensor consisted of a flexible LIG/TPU electrode (LTE), an LIG/TPU electrode with a microhole array, and a dielectric layer of TPU with microcone array molded from a laser-engraved hole array on wood, which provided high sensitivity (0.11 kPa-1), an ultrawide pressure detection range (20 Pa to 1.4 MPa), a fast response (~300 ms), and good stability (>4000 cycles, at 0-35 kPa). We believe that our research makes a significant contribution to the literature, because the easy availability of the materials derived from wood and the overall consistent flexibility meet the requirements of flexible electronic devices.

8.
Materials (Basel) ; 16(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109937

RESUMO

With the goal of substituting a hard metallic material for the soft Ultra High Molecular Weight Polyethylene (UHMWPE) presently used to make the bases of skis for alpine skiing, we used two non-thermodynamic equilibrium surface treatments with ultra-short (7-8 ps) laser pulses to modify the surface of square plates (50 × 50 mm2) made of austenitic stainless steel AISI 301H. By irradiating with linearly polarized pulses, we obtained Laser Induced Periodic Surface Structures (LIPSS). By laser machining, we produced a laser engraving on the surface. Both treatments produce a surface pattern parallel to one side of the sample. For both treatments, we measured with a dedicated snow tribometer the friction coefficient µ on compacted snow at different temperatures (-10 °C; -5 °C; -3 °C) for a gliding speed range between 1 and 6.1 ms-1. We compared the obtained µ values with those of untreated AISI 301H plates and of stone grinded, waxed UHMWPE plates. At the highest temperature (-3 °C), near the snow melting point, untreated AISI 301H shows the largest µ value (0.09), much higher than that of UHMWPE (0.04). Laser treatments on AISI 301H gave lower µ values approaching UHMWPE. We studied how the surface pattern disposition, with respect to the gliding direction of the sample on snow, affects the µ trend. For LIPSS with pattern, orientation perpendicular to the gliding direction on snow µ (0.05) is comparable with that of UHMWPE. We performed field tests on snow at high temperature (from -0.5 to 0 °C) using full-size skis equipped with bases made of the same materials used for the laboratory tests. We observed a moderate difference in performance between the untreated and the LIPSS treated bases; both performed worse than UHMWPE. Waxing improved the performance of all bases, especially LIPSS treated.

9.
Talanta ; 257: 124368, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801558

RESUMO

In this work, we developed a facile method to fabricate laser induced versatile graphene-metal nanoparticles (LIG-MNPs) electrodes with redox molecules sensing capabilities. Unlike conventional post-electrodes deposition, versatile graphene-based composites were engraved by a facile synthesis process. As a general protocol, we successfully prepared modular electrodes including LIG-PtNPs and LIG-AuNPs and applied them to electrochemical sensing. This facile laser engraving process enables rapid preparation and modification of electrodes, as well as simple replacement of metal particles modification towards varied sensing targets. The LIG-MNPs showed high sensitivity towards H2O2 and H2S due to their excellent electron transmission efficiency and electrocatalytic activity. By simply changing the types of coated precursors, the LIG-MNPs electrodes have successfully achieved real-time monitoring of H2O2 released from tumor cells and H2S contained in wastewater. This work contributed a universal and versatile protocol for quantitatively detecting a wide range of hazardous redox molecules.

10.
Micromachines (Basel) ; 13(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557526

RESUMO

To ensure the consistency of laser engraving depth in chemical milling, the precise control of 5-axis variable-angle laser engraving was the focus of research. Based on the energy conservation principle, the depth model of 5-axis variable-angle laser engraving is established, and the relationships among the laser engraving depth, laser power, scanning velocity, and beam axis angle are proposed. A depth-constraint real-time adaptive control method of laser power is proposed considering the variable scanning velocity and beam axis angles. The depth model parameters are identified by an orthogonal experiment, and a variable-angle laser engraving experiment with adaptive control of laser power is carried out. The coefficient of determination of the proposed depth model is 0.977, which means that the engraving depth model established in this paper predicts the engraving depth effectively and reliably. The depth-constraint adaptive control method of laser power obtains stable and uniform machining results under abrupt changes in scanning velocity and beam axis angles.

11.
Biosensors (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36354502

RESUMO

Laser-induced graphene (LIG) has been applied in many different sensing devices, from mechanical sensors to biochemical sensors. In particular, LIG fabricated on paper (PaperLIG) shows great promise for preparing cheap, flexible, and disposable biosensors. Distinct from the fabrication of LIG on polyimide, a two-step process is used for the fabrication of PaperLIG. In this study, firstly, a highly conductive PaperLIG is fabricated. Further characterization of PaperLIG confirmed that it was suitable for developing biosensors. Subsequently, the PaperLIG was used to construct a biosensor by immobilizing glucose oxidase, aminoferrocene, and Nafion on the surface. The developed glucose biosensor could be operated at a low applied potential (-90 mV) for amperometric measurements. The as-prepared biosensor demonstrated a limit of detection of (50-75 µM) and a linear range from 100 µM to 3 mM. The influence of the concentration of the Nafion casting solution on the performance of the developed biosensor was also investigated. Potential interfering species in saliva did not have a noticeable effect on the detection of glucose. Based on the experimental results, the simple-to-prepare PaperLIG-based saliva glucose biosensor shows great promise for application in future diabetes management.


Assuntos
Técnicas Biossensoriais , Grafite , Grafite/química , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Glucose/química , Lasers , Técnicas Eletroquímicas/métodos
12.
Micromachines (Basel) ; 13(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014231

RESUMO

Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human-machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser engraving, as a high throughput, patternable and mask-free method, was demonstrated to fabricate fabric sensors. In this work, we developed a simplified, cost-effective and environmentally friendly method for engraving ramie fabric (a kind of bast fabric) directly by laser under an ambient atmosphere to prepare strain and humidity sensors. We used carboxymethylcellulose (CMC) to pretreat ramie fabric before laser engraving and gained laser-carbonized ramie fabrics (LCRF) with high conductivity (65 Ω sq-1) and good permeability. The strain and humidity sensors had high sensitivity and good flexibility, which can be used for human health and activity monitoring.

13.
ACS Appl Mater Interfaces ; 14(25): 29144-29155, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723443

RESUMO

Textile-based electronics hold great promise because they can endow wearable devices with soft and comfortable characteristics. However, the inherent porosity and fluffiness of fabrics result in high surface roughness, which presents great challenges in the manufacture of high-performance fabric electrodes. In this work, we propose a thermal transfer printing method to address the above challenges, in which electrodes or circuits of silver flake/thermoplastic polyurethane (TPU) composites are prefabricated on a release film by coating and laser engraving and then laminated by hot-pressing to a variety of fabrics and textiles. This universal and scalable production technique enables fabric electrodes to be made without compromising the original wearability, washability, and stretchability of textiles. The prepared fabric electrodes exhibit high conductivity (5.48 × 104 S/cm), high adhesion (≥1750 N/m), good abrasion/washing resistance, high patterning resolution (∼40 µm), and good electromechanical performance up to 50% strain. To demonstrate the potential applications, we developed textile-based radio frequency identification (RFID) tags for remote identification and a large-sized heater for wearable thermotherapy. More importantly, the solvent-free thermal transfer printing technology developed in this paper enables people to DIY interesting flexible electronics on clothes with daily tools, which can promote the commercial application of smart textile-based electronics.

14.
Bioengineering (Basel) ; 9(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35200412

RESUMO

Conventional patterning methods for producing liquid metal (LM) electronic circuits, such as the template method, use chemical etching, which requires long cycle times, high costs, and multiple-step operations. In this study, a novel and reliable laser engraving micro-fabrication technology was introduced, which was used to fabricate personalized patterns of LM electronic circuits. First, by digitizing the pattern, a laser printing technology was used to burn a polyethylene (PE) film, where a polydimethylsiloxane (PDMS) or paper substrate was used to produce grooves. Then, the grooves were filled with LM and the PE film was removed; finally, the metal was packaged with PDMS film. The experimental results showed that the prepared LM could fabricate precise patterned electronic circuits, such as golden serpentine curves and Peano curves. The minimum width and height of the LM circuit were 253 µm and 200 µm, respectively, whereas the printed LM circuit on paper reached a minimum height of 26 µm. This LM flexible circuit could also be adapted to various sensor devices and was successfully applied to heart rate detection. Laser engraving micro-processing technologies could be used to customize various high-resolution LM circuit patterns in a short time, and have broad prospects in the manufacture of flexible electronic equipment.

15.
Anal Bioanal Chem ; 414(5): 1809-1817, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35061061

RESUMO

Quantitative mass spectrometric analysis of small-volume samples (e.g., < 1 µL) has been a challenge mainly due to the difficulties with sample handling and its injection into the system for analysis. Herein we report a microfluidic analytical platform coupling a droplet generator with conventional electrospray ionization-mass spectrometry (ESI-MS) that enables multiple analyses of a µL-sized sample with sensitivity and repeatability. In an analysis by droplet generator-assisted ESI-MS (DG-ESI-MS), a sample of µL volume is pulled into a sampling capillary and its equal nL-sized portions are generated by a droplet generator and analyzed by ESI-MS at time intervals of choice. The droplet generator is made of PMMA sheets by laser engraving conveniently and at a low cost. In a study to achieve effective ESI-MS detection of water-in-oil droplets, it's found that the problem of MS signal suppression by oil can be solved by using an appropriate organic carrier with ESI-enhancing additives. The proposed DG-ESI-MS method has linear calibration curves for both adenine and phenylalanine with LODs at the sub-µM level. Application of the present analytical platform for monitoring substrate concentration changes in an enzymatic reaction solution of 3 µL is demonstrated.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Adenina/química , Limite de Detecção , Fenilalanina/química , Reprodutibilidade dos Testes
16.
Heliyon ; 8(1): e08740, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35071812

RESUMO

This research aims to develop a fuzzy logic-based model for predicting the warp way and weft way Tearing Strength (TS) of laser engraved denim garments concerning two of the most important laser parameters such as Dots Per Inch (DPI) and Pixel Time (PT). Laser engraving is a widely used approach in garment washing factories because of its lower health hazards, time efficiency, and accuracy than other processes. However, controlling the laser parameters is very important, as if the tearing strength of the treated garments falls lower than the tolerable limit, the garment might be rejected. In this study, the fuzzy logic-based method is used to develop a prediction model to determine the Tearing Strength of the laser engraved denim. The model exhibits the exact same trend for TS as the experimental findings, i.e., TS increases with the decrement of either DPI, PT, or both. Moreover, the Mean Relative Errors (%) for warp and weft way Tearing Strength was found to be 3.34 and 3.53, respectively, which are within the acceptable limits. The coefficient of determination (R2) was found 0.98 (R = 0.99) for both the warp and weft way Tearing Strength, and the result suggested that up to 98% of total changes in warp and weft way Tearing Strength can be explained by the model. From the results, it can be evident that the principle of the proposed model can satisfactorily be used in predicting the Tearing Strength of the laser engraved denim garments, which will be beneficial for the garment washing industry by eliminating a lot of existing trial and error approach to set process parameters and thus can play an important role in increasing the productivity by process optimization.

17.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947115

RESUMO

This paper describes a low-temperature metallization and laser trimming process for microwave dielectric ceramic filters. The ceramic was metalized by electroless copper plating at a temperature lower than those of conventional low-temperature co-fired ceramic (LTCC) and direct bond copper (DBC) methods. Compared with filters made via traditional silver paste sintering, the metal in the holes of the microwave dielectric filters is uniform, smooth, and does not cause clogging nor become detached. Further, the batches of fabricated filters do not require individual inspection, reducing energy, labor, cost, and time requirements. A microwave dielectric filter was then manufactured from the prepared ceramic using a laser trimming machine with a line width and position error within ±50 µm; this demonstrates a more accurately controlled line width than that offered by screen printing. After using HFSS software simulations for preliminary experiments, the microwave dielectric filter was tuned to a target Wi-Fi band of 5.15-5.33 GHz; the return loss was <-10 dB, and the insertion loss was >-3 dB. To implement the real-world process, the laser parameters were optimized. Laser trimming has a higher success rate than traditional manual trimming, and the microwave dielectric filter manufactured here verified the feasibility of this process.

18.
Micromachines (Basel) ; 12(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34442569

RESUMO

Recently published studies have shown that microfluidic devices fabricated by in-house three-dimensional (3D) printing, computer numerical control (CNC) milling and laser engraving have a good quality of performance. The 3-in-1 3D printers, desktop machines that integrate the three primary functions in a single user-friendly set-up are now available for computer-controlled adaptable surface processing, for less than USD 1000. Here, we demonstrate that 3-in-1 3D printer-based micromachining is an effective strategy for creating microfluidic devices and an easier and more economical alternative to, for instance, conventional photolithography. Our aim was to produce plastic microfluidic chips with engraved microchannel structures or micro-structured plastic molds for casting polydimethylsiloxane (PDMS) chips with microchannel imprints. The reproducability and accuracy of fabrication of microfluidic chips with straight, crossed line and Y-shaped microchannel designs were assessed and their microfluidic performance checked by liquid stream tests. All three fabrication methods of the 3-in-1 3D printer produced functional microchannel devices with adequate solution flow. Accordingly, 3-in-1 3D printers are recommended as cheap, accessible and user-friendly tools that can be operated with minimal training and little starting knowledge to successfully fabricate basic microfluidic devices that are suitable for educational work or rapid prototyping.

19.
Micromachines (Basel) ; 12(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34357214

RESUMO

Femtosecond laser engraving offers appealing advantages compared to regular laser engraving such as higher precision and versatility. In particular, the inscription of deep patterns exhibits an increasing interest in industry. In this work, an optimization protocol based on constraining overlap ratio and scan number is demonstrated. The proposed method allows changing overlap ratio while maintaining depth in the same range, which reduces the sampling number. This study WAS applied to stainless steel 316 L and sapphire for engravings deeper than 100 µm. Results exhibit overall depths higher than threshold values and allowed to determine optimized engraving quality, for instance, roughness in steel can be reduced while maintaining depth and taper angle by reducing overlap ratio. The optimized laser parameters such as roughness and taper angle factors for sapphire were also found to be as follows: 200 kHz, 86% overlap and 12 J/cm2. As a demonstration, a logo engraving is illustrated at the end.

20.
Small ; 17(30): e2100244, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160145

RESUMO

An ideal anti-counterfeiting label not only needs to be unclonable and accurate but also must consider cost and efficiency. But the traditional physical unclonable function (PUF) recognition technology must match all the images in a database one by one. The matching time increases with the number of samples. Here, a new kind of PUF anti-counterfeiting label is introduced with high modifiability, low reagent cost (2.1 × 10-4 USD), simple and fast authentication (overall time 12.17 s), high encoding capacity (2.1 × 10623 ), and its identification software. All inorganic perovskite nanocrystalline films with clonable micro-profile and unclonable micro-texture are prepared by laser engraving for lyophilic patterning, liquid strip sliding for high throughput droplet generation, and evaporative self-assembling for thin film deposition. A variety of crystal film profile shapes can be used as "specificator" for image recognition, and the verification time of recognition technology based on this divide-and-conquer strategy can be decreased by more than 20 times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA