Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(210): 20230570, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228183

RESUMO

The emergence and spread of drug-resistant Plasmodium falciparum parasites have hindered efforts to eliminate malaria. Monitoring the spread of drug resistance is vital, as drug resistance can lead to widespread treatment failure. We develop a Bayesian model to produce spatio-temporal maps that depict the spread of drug resistance, and apply our methods for the antimalarial sulfadoxine-pyrimethamine. We infer from genetic count data the prevalences over space and time of various malaria parasite haplotypes associated with drug resistance. Previous work has focused on inferring the prevalence of individual molecular markers. In reality, combinations of mutations at multiple markers confer varying degrees of drug resistance to the parasite, indicating that multiple markers should be modelled together. However, the reporting of genetic count data is often inconsistent as some studies report haplotype counts, whereas some studies report mutation counts of individual markers separately. In response, we introduce a latent multinomial Gaussian process model to handle partially reported spatio-temporal count data. As drug-resistant mutations are often used as a proxy for treatment efficacy, point estimates from our spatio-temporal maps can help inform antimalarial drug policies, whereas the uncertainties from our maps can help with optimizing sampling strategies for future monitoring of drug resistance.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Teorema de Bayes , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Mutação , Biomarcadores , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
2.
Biometrics ; 79(3): 2732-2742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36321329

RESUMO

Batch marking is common and useful for many capture-recapture studies where individual marks cannot be applied due to various constraints such as timing, cost, or marking difficulty. When batch marks are used, observed data are not individual capture histories but a set of counts including the numbers of individuals first marked, marked individuals that are recaptured, and individuals captured but released without being marked (applicable to some studies) on each capture occasion. Fitting traditional capture-recapture models to such data requires one to identify all possible sets of capture-recapture histories that may lead to the observed data, which is computationally infeasible even for a small number of capture occasions. In this paper, we propose a latent multinomial model to deal with such data, where the observed vector of counts is a non-invertible linear transformation of a latent vector that follows a multinomial distribution depending on model parameters. The latent multinomial model can be fitted efficiently through a saddlepoint approximation based maximum likelihood approach. The model framework is very flexible and can be applied to data collected with different study designs. Simulation studies indicate that reliable estimation results are obtained for all parameters of the proposed model. We apply the model to analysis of golden mantella data collected using batch marks in Central Madagascar.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Funções Verossimilhança , Simulação por Computador , Modelos Estatísticos
3.
Ecol Evol ; 10(24): 13968-13979, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391695

RESUMO

In Switzerland, the European wildcat (Felis silvestris), a native felid, is protected by national law. In recent decades, the wildcat has slowly returned to much of its original range and may have even expanded into new areas that were not known to be occupied before. For the implementation of efficient conservation actions, reliable information about the status and trend of population size and density is crucial. But so far, only one reliable estimate of density in Switzerland was produced in the northern Swiss Jura Mountains. Wildcats are relatively rare and elusive, but camera trapping has proven to be an effective method for monitoring felids. We developed and tested a monitoring protocol using camera trapping in the northern Jura Mountains (cantons of Bern and Jura) in an area of 100 km2. During 60 days, we obtained 105 pictures of phenotypical wildcats of which 98 were suitable for individual identification. We identified 13 individuals from both sides and, additionally, 5 single right-sided flanks and 3 single left-sided flanks that could not be matched to unique individuals. We analyzed the camera-trap data using the R package multimark, which has been extended to include a novel spatial capture-recapture model for encounter histories that include multiple "noninvasive" marks, such as bilaterally asymmetrical left- and right-sided flanks, that can be difficult (or impossible) to reliably match to individuals. Here, we present this model in detail for the first time. Based on a "semi-complete" data likelihood, the model is less computationally demanding than Bayesian alternatives that rely on a data-augmented complete data likelihood. The spatially explicit capture-recapture model estimated a wildcat density (95% credible interval) of 26 (17-36) per 100 km2 suitable habitat. Our integrated model produced higher abundance and density estimates with improved precision compared to single-sided analyses, suggesting spatially explicit capture-recapture methods with multiple "noninvasive" marks can improve our ability to monitor wildcat population status.

4.
Ecol Evol ; 5(21): 4920-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640671

RESUMO

I describe an open-source R package, multimark, for estimation of survival and abundance from capture-mark-recapture data consisting of multiple "noninvasive" marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histories from multiple noninvasive sources that otherwise cannot be reliably matched (e.g., left- and right-sided photographs of bilaterally asymmetrical individuals). The package is currently capable of fitting open population Cormack-Jolly-Seber (CJS) and closed population abundance models with up to two mark types using Bayesian Markov chain Monte Carlo (MCMC) methods. multimark can also be used for Bayesian analyses of conventional capture-recapture data consisting of a single-mark type. Some package features include (1) general model specification using formulas already familiar to most R users, (2) ability to include temporal, behavioral, age, cohort, and individual heterogeneity effects in detection and survival probabilities, (3) improved MCMC algorithm that is computationally faster and more efficient than previously proposed methods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5) data simulation capabilities for power analyses and assessing model performance. I demonstrate use of multimark using left- and right-sided encounter histories for bobcats (Lynx rufus) collected from remote single-camera stations in southern California. In this example, there is evidence of a behavioral effect (i.e., trap "happy" response) that is otherwise indiscernible using conventional single-sided analyses. The package will be most useful to ecologists seeking stronger inferences by combining different sources of mark-recapture data that are difficult (or impossible) to reliably reconcile, particularly with the sparse datasets typical of rare or elusive species for which noninvasive sampling techniques are most commonly employed. Addressing deficiencies in currently available software, multimark also provides a user-friendly interface for performing Bayesian multimodel inference using capture-recapture data consisting of a single conventional mark or multiple noninvasive marks.

5.
Biometrics ; 70(4): 962-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24942186

RESUMO

We investigate model Mt,α  for abundance estimation in closed-population capture-recapture studies, where animals are identified from natural marks such as DNA profiles or photographs of distinctive individual features. Model Mt,α  extends the classical model Mt  to accommodate errors in identification, by specifying that each sample identification is correct with probability α and false with probability 1-α. Information about misidentification is gained from a surplus of capture histories with only one entry, which arise from false identifications. We derive an exact closed-form expression for the likelihood for model Mt,α  and show that it can be computed efficiently, in contrast to previous studies which have held the likelihood to be computationally intractable. Our fast computation enables us to conduct a thorough investigation of the statistical properties of the maximum likelihood estimates. We find that the indirect approach to error estimation places high demands on data richness, and good statistical properties in terms of precision and bias require high capture probabilities or many capture occasions. When these requirements are not met, abundance is estimated with very low precision and negative bias, and at the extreme better properties can be obtained by the naive approach of ignoring misidentification error. We recommend that model Mt,α  be used with caution and other strategies for handling misidentification error be considered. We illustrate our study with genetic and photographic surveys of the New Zealand population of southern right whale (Eubalaena australis).


Assuntos
Artefatos , Funções Verossimilhança , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Vigilância da População/métodos , Baleias , Algoritmos , Animais , Simulação por Computador , Interpretação Estatística de Dados , Nova Zelândia/epidemiologia , Densidade Demográfica , Dinâmica Populacional , Tamanho da Amostra
6.
Biometrics ; 69(3): 766-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23845216

RESUMO

SUMMARY: Non-invasive marks, including pigmentation patterns, acquired scars, and genetic markers, are often used to identify individuals in mark-recapture experiments. If animals in a population can be identified from multiple, non-invasive marks then some individuals may be counted twice in the observed data. Analyzing the observed histories without accounting for these errors will provide incorrect inference about the population dynamics. Previous approaches to this problem include modeling data from only one mark and combining estimators obtained from each mark separately assuming that they are independent. Motivated by the analysis of data from the ECOCEAN online whale shark (Rhincodon typus) catalog, we describe a Bayesian method to analyze data from multiple, non-invasive marks that is based on the latent-multinomial model of Link et al. (2010, Biometrics 66, 178-185). Further to this, we describe a simplification of the Markov chain Monte Carlo algorithm of Link et al. (2010, Biometrics 66, 178-185) that leads to more efficient computation. We present results from the analysis of the ECOCEAN whale shark data and from simulation studies comparing our method with the previous approaches.


Assuntos
Migração Animal , Biometria/métodos , Tubarões/anatomia & histologia , Algoritmos , Animais , Teorema de Bayes , Simulação por Computador , Marcadores Genéticos , Cadeias de Markov , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Reconhecimento Fisiológico de Modelo , Fotografação , Dinâmica Populacional/estatística & dados numéricos , Tubarões/genética , Tubarões/fisiologia , Pigmentação da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA