Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Plant Cell ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012965

RESUMO

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

2.
Microbiome ; 12(1): 124, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982519

RESUMO

BACKGROUND: Beneficial associations between plants and soil microorganisms are critical for crop fitness and resilience. However, it remains obscure how microorganisms are assembled across different root compartments and to what extent such recruited microbiomes determine crop performance. Here, we surveyed the root transcriptome and the root and rhizosphere microbiome via RNA sequencing and full-length (V1-V9) 16S rRNA gene sequencing from genetically distinct monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. RESULTS: Overall transcriptome and microbiome display a clear assembly pattern across the compartments, i.e., from the soil through the rhizosphere to the root tissues. Co-variation analysis identified that genotype dominated the effect on the microbial community and gene expression over the nutrient stress conditions. Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral root development had the largest effect on host gene expression and microbiome assembly, as compared to mutations affecting other root types. Cooccurrence and trans-kingdom network association analysis demonstrated that the keystone bacterial taxon Massilia (Oxalobacteraceae) is associated with root functional genes involved in flowering time and overall plant biomass. We further observed that the developmental stage drives the differentiation of the rhizosphere microbial assembly, especially the associations of the keystone bacteria Massilia with functional genes in reproduction. Taking advantage of microbial inoculation experiments using a maize early flowering mutant, we confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. CONCLUSION: We conclude that specific microbiota supporting lateral root formation could enhance crop performance by mediating functional gene expression underlying plant flowering time in maize. Video Abstract.


Assuntos
Flores , Microbiota , Raízes de Plantas , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Zea mays , Zea mays/microbiologia , Zea mays/genética , Raízes de Plantas/microbiologia , Flores/microbiologia , Flores/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Transcriptoma , Mutação , Regulação da Expressão Gênica de Plantas
3.
J Integr Plant Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923126

RESUMO

AUXIN RESPONSE FACTOR 7 (ARF7)-mediated auxin signaling plays a key role in lateral root (LR) development by regulating downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor genes, including LBD16, LBD18, and LBD29. LBD proteins are believed to regulate the transcription of downstream genes as homodimers or heterodimers. However, whether LBD29 forms dimers with other proteins to regulate LR development remains unknown. Here, we determined that the Arabidopsis thaliana (L.) Heynh. MYB transcription factors MYB2 and MYB108 interact with LBD29 and regulate auxin-induced LR development. Both MYB2 and MYB108 were induced by auxin in an ARF7-dependent manner. Disruption of MYB2 by fusion with an SRDX domain severely affected auxin-induced LR formation and the ability of LBD29 to induce LR development. By contrast, overexpression of MYB2 or MYB108 resulted in greater LR numbers, except in the lbd29 mutant background. These findings underscore the interdependence and importance of MYB2, MYB108, and LBD29 in regulating LR development. In addition, MYB2-LBD29 and MYB108-LBD29 complexes promoted the expression of CUTICLE DESTRUCTING FACTOR 1 (CDEF1), a member of the GDSL (Gly-Asp-Ser-Leu) lipase/esterase family involved in LR development. In summary, this study identified MYB2-LBD29 and MYB108-LBD29 regulatory modules that act downstream of ARF7 and intricately control auxin-mediated LR development.

4.
Sci Total Environ ; 945: 174113, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908577

RESUMO

The interception of microplastics (MPs) by mangrove roots plays an indispensable role in reducing the environmental risks of MPs. However, there remains limited research on the fate of the intercepted MPs. Hereby, the uptake and subsequent translocation of 0.2 µm and 2 µm PS MPs with different coating charge by the typical salt-secreting mangrove plants (Aegiceras corniculatum) were investigated. Compared to amino-functionalized PS with positive charge (PS-NH2), the visualized results indicated that the efficient uptake of carboxy-functionalized PS with negative charge (PS-COOH) was more dependent on taproots. But for the lateral roots, it only allowed the entry of PS-NH2 instead of PS-COOH. The specific uptake pathways of PS-NH2 on the lateral roots could attribute to the release of H+ and organic acids by root hairs, as well as the relative higher Zeta potential. After entering the Aegiceras corniculatum roots, the translocation of PS MPs was restricted by their particle sizes. Furthermore, the release of PS MPs from Aegiceras corniculatum leaf surfaces through the salt glands and stomata was observed. And the decline in the photochemical efficiency of leaves under PS MPs exposure also indirectly proved the foliar emission of PS MPs. Our study improved the understanding of the environmental behaviors and risks of the retained MPs in mangroves.


Assuntos
Microplásticos , Raízes de Plantas , Poluentes Químicos da Água , Áreas Alagadas , Microplásticos/metabolismo , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Primulaceae/metabolismo , Monitoramento Ambiental
5.
Front Plant Sci ; 15: 1387321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779077

RESUMO

Plants modify their root system architecture (RSA) in response to nitrogen (N) deficiency. The plant steroidal hormone, brassinosteroid (BR), plays important roles in root growth and development. This study demonstrates that optimal levels of exogenous BR impact significant increases in lateral root length and numbers in Arabidopsis seedlings under mild N-deficient conditions as compared to untreated seedlings. The impact of BR on RSA was stronger under mild N deficiency than under N-sufficient conditions. The BR effects on RSA were mimicked in dominant mutants of BZR1 and BES1 (bzr1-1D and bes1-D) transcription factors, while the RSA was highly reduced in the BR-insensitive mutant bri1-6, confirming that BR signaling is essential for the development of RSA under both N-sufficient and N-deficient conditions. Exogenous BR and constitutive activity of BZR1 and BES1 in dominant mutants led to enhanced root meristem, meristematic cell number, and cortical cell length. Under mild N deficiency, bzr1-1D displayed higher fresh and dry shoot weights, chlorophyll content, and N levels in the shoot, as compared to the wild type. These results indicate that BR modulates RSA under both N-sufficient and N-deficient conditions via the transcription factors BES1/BZR1 module and confers tolerance to N deficiency.

6.
FEBS Lett ; 598(9): 1008-1021, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605280

RESUMO

Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Estabilidade de RNA
7.
BMC Plant Biol ; 24(1): 81, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302884

RESUMO

BACKGROUND: As a xerophytic shrub, forming developed root system dominated with lateral roots is one of the effective strategies for Zygophyllum xanthoxylum to adapt to desert habitat. However, the molecular mechanism of lateral root formation in Z. xanthoxylum is still unclear. Auxin response factors (ARFs) are a master family of transcription factors (TFs) in auxin-mediated biological processes including root growth and development. RESULTS: Here, to determine the relationship between ARFs and root system formation in Z. xanthoxylum, a total of 30 potential ZxARF genes were first identified, and their classifications, evolutionary relationships, duplication events and conserved domains were characterized. 107 ARF protein sequences from alga to higher plant species including Z. xanthoxylum are split into A, B, and C 3 Clades, consisting with previous studies. The comparative analysis of ARFs between xerophytes and mesophytes showed that A-ARFs of xerophytes expanded considerably more than that of mesophytes. Furthermore, in this Clade, ZxARF5b and ZxARF8b have lost the important B3 DNA-binding domain partly and completely, suggesting both two proteins may be more functional in activating transcription by dimerization with AUX/IAA repressors. qRT-PCR results showed that all A-ZxARFs are high expressed in the roots of Z. xanthoxylum, and they were significantly induced by drought stress. Among these A-ZxARFs, the over-expression assay showed that ZxARF7c and ZxARF7d play positive roles in lateral root formation. CONCLUSION: This study provided the first comprehensive overview of ZxARFs and highlighted the importance of A-ZxARFs in the lateral root development.


Assuntos
Zanthoxylum , Zygophyllum , Ácidos Indolacéticos/metabolismo , Zygophyllum/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
J Exp Bot ; 75(2): 594-604, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37882632

RESUMO

Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.


Assuntos
Raízes de Plantas , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo , Melhoramento Vegetal , Solo/química
9.
Rice (N Y) ; 16(1): 37, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615779

RESUMO

The rice root system consists of two types of lateral roots, indeterminate larger L-types capable of further branching, and determinate, short, unbranched S-types. L-type laterals correspond to the typical lateral roots of cereals whereas S-type laterals are unique to rice. Both types contribute to nutrient and water uptake and genotypic variation for density and length of these laterals could be exploited in rice improvement to enhance adaptations to nutrient and water-limited environments. Our objectives were to determine how best to screen for lateral root density and length and to identify markers linked to genotypic variation for these traits. Using different growing media showed that screening in nutrient solution exposed genotypic variation for S-type and L-type density, but only the lateral roots of soil-grown plants varied for their lengths. A QTL mapping population developed from parents contrasting for lateral root traits was grown in a low-P field, roots were sampled, scanned and density and length of lateral roots measured. One QTL each was detected for L-type density (LDC), S-type density on crown root (SDC), S-type density on L-type (SDL), S-type length on L-type (SLL), and crown root number (RNO). The QTL for LDC on chromosome 5 had a major effect, accounting for 46% of the phenotypic variation. This strong positive effect was confirmed in additional field experiments, showing that lines with the donor parent allele at qLDC5 had 50% higher LDC. Investigating the contribution of lateral root traits to P uptake using stepwise regressions indicated LDC and RNO were most influential, followed by SDL. Simulating effects of root trait differences conferred by the main QTL in a P uptake model confirmed that qLDC5 was most effective in improving P uptake followed by qRNO9 for RNO and qSDL9 for S-type lateral density on L-type laterals. Pyramiding qLDC5 with qRNO9 and qSDL9 would be possible given that trade-offs between traits were not detected. Phenotypic selection for the RNO trait during variety development would be feasible, however, the costs of doing so reliably for lateral root density traits is prohibitive and markers identified here therefore provide the first opportunity to incorporate such traits into a breeding program.

10.
Curr Protoc ; 3(8): e869, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37625015

RESUMO

The reactive oxygen species (ROS) burst assay is a valuable tool for studying pattern-triggered immunity (PTI) in plants. During PTI, the interaction between pathogen recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) leads to the rapid production of ROS in the apoplastic space. The resultant ROS can be measured using a chemiluminescent approach that involves the usage of horseradish peroxidase and luminol. Although several methods and protocols are available to detect early ROS bursts in leaf tissues, no dedicated method is available for root tissues. Here, we have established a reliable method to measure the PAMP-triggered ROS burst response in soybean lateral roots. In plants, lateral roots are the potential entry and colonization sites for pathogens in the rhizosphere. We have used important PAMPs such as chitohexaose, flagellin 22 peptide fragment, and laminarin to validate our method. In addition, we provide a detailed methodology for the isolation and application of fungal cell wall components to monitor the oxidative burst in soybean lateral roots. Furthermore, we provide methodology for performing ROS burst assays in soybean leaf discs with laminarin and fungal cell walls. This approach could also be applied to leaf and root tissues of other plant species to study the PTI response upon elicitor treatment. © 2023 Wiley Periodicals LLC. Basic Protocol: Reactive oxygen species (ROS) burst assay in soybean lateral root tissues Alternate Protocol: ROS burst assay in soybean leaf discs Support Protocol: Isolating fungal cell wall fractions.


Assuntos
Glycine max , Luminescência , Moléculas com Motivos Associados a Patógenos , Espécies Reativas de Oxigênio , Explosão Respiratória
11.
Front Plant Sci ; 14: 1164534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528987

RESUMO

Common bermudagrass [Cynodon dactylon (L.) Pers.] has higher utilization potential on saline soil due to its high yield potential and excellent stress tolerance. However, key functional genes have not been well studied partly due to its hard transformation. Here, bermudagrass "Wrangler" successfully overexpressing CdWRKY2 exhibited significantly enhanced salt and ABA sensitivity with severe inhibition of shoot and root growth compared to the transgenic negative line. The reduced auxin accumulation and higher ABA sensitivity of the lateral roots (LR) under salt stress were observed in CdWRKY2 overexpression Arabidopsis lines. IAA application could rescue or partially rescue the salt hypersensitivity of root growth inhibition in CdWRKY2-overexpressing Arabidopsis and bermudagrass, respectively. Subsequent experiments in Arabidopsis indicated that CdWRKY2 could directly bind to the promoter region of AtWRKY46 and downregulated its expression to further upregulate the expression of ABA and auxin pathway-related genes. Moreover, CdWRKY2 overexpression in mapk3 background Arabidopsis could partly rescue the salt-inhibited LR growth caused by CdWRKY2 overexpression. These results indicated that CdWRKY2 could negatively regulate LR growth under salt stress via the regulation of ABA signaling and auxin homeostasis, which partly rely on AtMAPK3 function. CdWRKY2 and its homologue genes could also be useful targets for genetic engineering of salinity-tolerance plants.

12.
J Exp Bot ; 74(22): 7034-7044, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486862

RESUMO

Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.


Assuntos
Cuscuta , Striga , Plantas , Citocininas , Interações Hospedeiro-Parasita , Raízes de Plantas
13.
Proc Natl Acad Sci U S A ; 120(31): e2216543120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487096

RESUMO

Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas
14.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176837

RESUMO

Plants can adapt to the spatial heterogeneity of soil nutrients by changing the morphology and architecture of the root system. Here, we explored the role of auxin in the response of sweetpotato roots to potassium (K+) deficiency stress. Two sweetpotato cultivars, Xushu 32 (low-K-tolerant) and Ningzishu 1 (low-K-sensitive), were cultured in low K+ (0.1 mmol L-1, LK) and normal K+ (10 mmol L-1, CK) nutrient solutions. Compared with CK, LK reduced the dry mass, K+ content, and K+ accumulation in the two cultivars, but the losses of Xushu 32 were smaller than those of Ningzishu 1. LK also affected root growth, mainly impairing the length, surface area, forks number, and crossings number. However, Xushu 32 had significantly higher lateral root length, density, and surface area than Ningzishu 1, closely related to the roots' higher indole-3-acetic acid (IAA) content. According to the qPCR results, Xushu 32 synthesized more IAA (via IbYUC8 and IbTAR2) in leaves but transported and accumulated in roots through polar transport (via IbPIN1, IbPIN3, and IbAUX1). It was also associated with the upregulation of auxin signaling pathway genes (IbIAA4 and IbIAA8) in roots. These results imply that IAA participates in the formation of lateral roots and the change in root architecture during the tolerance to low K+ stress of sweetpotato, thus improving the absorption of K+ and the formation of biomass.

15.
J Exp Bot ; 74(14): 4031-4049, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37004244

RESUMO

Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it was unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Retroalimentação , Arabidopsis/metabolismo , Peptídeos/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Proc Natl Acad Sci U S A ; 120(15): e2301054120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011213

RESUMO

The establishment of beneficial interactions with microbes has helped plants to modulate root branching plasticity in response to environmental cues. However, how the plant microbiota harmonizes with plant roots to control their branching is unknown. Here, we show that the plant microbiota influences root branching in the model plant Arabidopsis thaliana. We define that the microbiota's ability to control some stages in root branching can be independent of the phytohormone auxin that directs lateral root development under axenic conditions. In addition, we revealed a microbiota-driven mechanism controlling lateral root development that requires the induction of ethylene response pathways. We show that the microbial effects on root branching can be relevant for plant responses to environmental stresses. Thus, we discovered a microbiota-driven regulatory pathway controlling root branching plasticity that could contribute to plant adaptation to different ecosystems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
17.
Front Plant Sci ; 14: 1080427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909382

RESUMO

Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop, nitrogen supply can not only increase the number of new shoots and leaves but also improve the tenderness of the former. However, a conundrum remains in science, which is the molecular mechanism of nitrogen use efficiency, especially long non-coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified through high-throughput sequencing analysis of lateral roots under nitrogen stress and control conditions, of which 9,451 were differentially expressed lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-responsive lncRNAs, co-expression clustering was employed between lncRNAs and coding genes. KEGG enrichment analysis revealed nitrogen-responsive lncRNAs may involve in many biological processes such as plant hormone signal transduction, nitrogen metabolism and protein processing in endoplasmic reticulum. The expression abundance of 12 DE-lncRNAs were further verified by RT-PCR, and their expression trends were consistent with the results of RNA-seq. This study expands the research on lncRNAs in tea plants, provides a novel perspective for the potential regulation of lncRNAs on nitrogen stress, and valuable resources for further improving the nitrogen use efficiency of tea plants.

18.
New Phytol ; 237(4): 1204-1214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345913

RESUMO

In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.


Assuntos
Ubiquitina-Proteína Ligases , Zea mays , Zea mays/genética , Zea mays/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Meristema/metabolismo
19.
Front Plant Sci ; 13: 1033938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340418

RESUMO

NUCLEAR FACTOR Y subunit alpha (NF-YA), together with NF-YB and NF-YC, regulates plant growth and development, as well as plant responses to biotic and abiotic stresses. Although extensive studies have examined the functions of NF-YAs in Arabidopsis thaliana, the roles of NF- YAs in Glycinme max are poorly understood. In this study, we identified a phosphorus (P) starvation-responsive NF-YA8 in soybean. The expression of GmNF-YA8 is induced by low P or low nitrogen in leaves, but not by potassium or iron starvation, respectively. GmNF-YA8 is localized in the nucleus and plasma membrane. Ectopic expression of GmNF-YA8 inhibits plant growth and delayed flowering in Arabidopsis. Exogenous application of gibberellic acid (GA) rescues the delayed flowering phenotype in Arabidopsis overexpressing GmNF-YA8 lines GmNF-YA8OE-05 and GmNF-YA8OE-20. Moreover, quantitative real time PCR (qRT-PCR) verified that overexpression of GmNF-YA8 downregulates GA20ox2 and GA3ox2 expression, but upregulates GA2ox2 and GA2ox3 that encode enzymes, which inactive bioactive GAs. Consistent with the late flowering phenotype of Arabidopsis trangenic lines that overexpress GmNF-YA8, the transcript levels of flowering-promoting genes AP1, CO, LFY, and SOC1 are reduced. In addition, overexpression of GmNF-YA8 promotes the emergence of lateral root (LR) primordium from epidermis rather than the initiation of LR in low P, and increases the LR density in low nitrogen. Our results provide insights into the roles of GmNF-YA8.

20.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314783

RESUMO

Priming is the process through which periodic elevations in auxin signalling prepattern future sites for lateral root formation, called prebranch sites. Thus far, the extent to which elevations in auxin concentration and/or auxin signalling are required for priming and prebranch site formation has remained a matter of debate. Recently, we discovered a reflux-and-growth mechanism for priming generating periodic elevations in auxin concentration that subsequently dissipate. Here, we reverse engineer a mechanism for prebranch site formation that translates these transient elevations into a persistent increase in auxin signalling, resolving the prior debate into a two-step process of auxin concentration-mediated initial signal and auxin signalling capacity-mediated memorization. A crucial aspect of the prebranch site formation mechanism is its activation in response to time-integrated rather than instantaneous auxin signalling. The proposed mechanism is demonstrated to be consistent with prebranch site auxin signalling dynamics, lateral inhibition, and symmetry-breaking mechanisms and perturbations in auxin homeostasis.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Ácidos Indolacéticos/farmacologia , Raízes de Plantas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA