Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; 17(15): e202301534, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470975

RESUMO

The development of advanced electrolysis technologies such as anion exchange membrane water electrolyzer (AEMWE) is central to the vision of a sustainable energy future. Key to the realization of such AEMWE technology lies in the exploration of low-cost and high-efficient catalysts for facilitating the anodic oxygen evolution reaction (OER). Despite tremendous efforts in the fundamental research, most of today's OER works are conducted under room temperature, which deviates significantly with AEMWE's operating temperature (50-80 °C). To bridge this gap, it is highly desirable to obtain insights into the OER catalytic behavior at elevated temperatures. Herein, using the well-known perovskite catalyst Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) as a proof of concept, the effect of temperature on the variation in OER catalytic activity and stability is evaluated. It is found that the BSCF's activity increases with increasing temperature due to enhanced lattice oxygen participation promoting the lattice oxygen-mediated OER process. Further, surface amorphization and cation leaching of BSCF become more pronounced as temperature increases, causing a somewhat attenuated OER stability. These new understandings of the fundamental OER catalysis over perovskite materials at industrial-relevant temperature conditions are expected to have strong implications for the research of OER catalysts to be deployed in practical water electrolyzers.

2.
Small ; 20(26): e2309091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247184

RESUMO

Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58Fe0.38P0.07O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.

3.
Adv Sci (Weinh) ; 9(14): e2200530, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306740

RESUMO

Oxygen evolution reaction (OER) is a key half-reaction in many electrochemical transformations, and efficient electrocatalysts are critical to improve its kinetics which is typically sluggish due to its multielectron-transfer nature. Perovskite oxides are a popular category of OER catalysts, while their activity remains insufficient under the conventional adsorbate evolution reaction scheme where scaling relations limit activity enhancement. The lattice oxygen-mediated mechanism (LOM) has been recently reported to overcome such scaling relations and boost the OER catalysis over several doped perovskite catalysts. However, direct evidence supporting the LOM participation is still very little because the doping strategy applied would introduce additional active sites that may mask the real reaction mechanism. Herein, a dopant-free, cation deficiency manipulation strategy to tailor the bulk diffusion properties of perovskites without affecting their surface properties is reported, providing a perfect platform for studying the contribution of LOM to OER catalysis. Further optimizing the A-site deficiency achieves a perovskite candidate with excellent intrinsic OER activity, which also demonstrates outstanding performance in rechargeable Zn-air batteries and water electrolyzers. These findings not only corroborate the key role of LOM in OER electrocatalysis, but also provide an effective way for the rational design of better catalyst materials for clean energy technologies.

4.
Adv Mater ; 33(41): e2103392, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34436805

RESUMO

Corner-sharing oxides usually suffer from structural reconstruction during the bottleneck oxygen-evolution reaction (OER) in water electrolysis. Therefore, introducing dynamically stable active sites in an alternative structure is urgent but challenging. Here, 1D 5H-polytype Ba5 Bi0.25 Co3.75 FeO14- δ oxide with face-sharing motifs is identified as a highly active and stable candidate for alkaline OER. Benefiting from the stable face-sharing motifs with three couples of combined bonds, Ba5 Bi0.25 Co3.75 FeO14- δ can maintain its local structures even under high OER potentials as evidenced by fast operando spectroscopy, contributing to a negligible performance degradation over 110 h. Besides, the higher Co valence and smaller orbital bandgap in Ba5 Bi0.25 Co3.75 FeO14- δ endow it with a much better electron transport ability than its corner-sharing counterpart, leading to a distinctly reduced overpotential of 308 mV at 10 mA cm-2 in 0.1 m KOH. Further mechanism studies show that the short distance between lattice-oxygen sites in face-sharing Ba5 Bi0.25 Co3.75 FeO14- δ can accelerate the deprotonation step (*OOH + OH-  = *OO + H2 O + e- ) via a steric inductive effect to promote lattice-oxygen participation. In this work, not only is a new 1D face-sharing oxide with impressive OER performance discovered, but also a rational design of dynamic stable and active sites for sustainable energy systems is inaugurated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA