Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39239734

RESUMO

Van der Waals heterostructures open up vast possibilities for applications in optoelectronics, especially since it was recognized that the optical properties of transition-metal dichalcogenides (TMDC) can be enhanced by adjacent hBN layers. However, although many micrometer-sized structures have been fabricated, the bottleneck for applications remains the lack of large-area structures with electrically tunable photoluminescence emission. In this study, we demonstrate the electrical charge carrier tuning for large-area epitaxial MoSe2 grown directly on epitaxial hBN. The structure is produced in a multistep procedure involving Metalorganic Vapor Phase Epitaxy (MOVPE) growth of large-area hBN, a wet transfer of hBN onto a SiO2/Si substrate, and the subsequent Molecular Beam Epitaxy (MBE) growth of monolayer MoSe2. The electrically induced change of the carrier concentration is deduced from the evolution of well-resolved charged and neutral exciton intensities. Our findings show that it is feasible to grow large-area, electrically addressable, high-optical-quality van der Waals heterostructures.

2.
ACS Appl Mater Interfaces ; 16(36): 47477-47485, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39176983

RESUMO

A significantly enhanced THz radiation generation from femtosecond photoexcited MoS2 layers due to Nb-doping is reported here. Different microscopic mechanisms involved in the THz photocurrent generation vary in their relative contributions in the two cases of photoexcitation, i.e., above and below the electronic bandgap of the layers. For a moderate Nb-doping level of just ∼0.05%, we have observed a multifold enhancement in the THz emission for the case of the above bandgap excitation, which is, though, nearly 1.5 times for the case of the below bandgap excitation of the monolayer MoS2. Alongside the difference in THz generation efficiency, the THz pulse polarity is also reversed at the above bandgap excitation of the Nb-doped layers, consequent to the reversed surface depletion field. Except for a slightly smaller difference in the THz enhancement factor, all the observations are reproducible in the bilayers as well to imply a weaker inversion symmetry and reduced screening of the surface depletion field due to Nb-doping. Furthermore, we employed pristine MoS2 and Nb-doped MoS2 monolayers to fabricate piezoelectric nanogenerator devices. Like enhancement in the ultrafast THz emission, the piezoelectric performance of the nanogenerator, fabricated with the Nb-doped MoS2 monolayer is also increased by a similar factor.

3.
Nano Lett ; 24(36): 11232-11238, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213644

RESUMO

Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.

4.
Nano Lett ; 24(35): 11028-11035, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186253

RESUMO

The advancement of electronic technology has led to increasing research on performance and stability. Continuous electrical pulse stimulation can cause crystal structure changes, affecting performance and accelerating aging. Controlled repair of these defects is crucial. In this study, we investigated crystal structure changes in van der Waals (vdW) InSe crystals under continuous electric pulses by using electron beam lithography (EBL) and spherical aberration corrected transmission electron microscopy (Cs-TEM). Results show that electrical pulses induce amorphous regions in the InSe lattice, increasing the device resistance. We used Cs-STEM probe scanning for precise repair, abbreviated SPRT, to optimize device performance. SPRT is related to electric fields induced by the electron beam and can be applied to other 2D materials like α-In2Se3 and CrSe2, offering a potential approach to extend device lifespan.

5.
ACS Appl Mater Interfaces ; 16(30): 40149-40159, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016613

RESUMO

Friction, typically associated with reduced efficiency and reliability of machines and devices, occurs when two objects are displaced against each other. This is a strongly material-dependent phenomenon, and the emergence of many 2D materials has opened up new opportunities to design systems with desired tribological properties. Here, we combine high throughput simulations and machine learning models to develop a statistical approach of adhesion, van der Waals, and corrugation energies of a large dataset of monolayered materials. The machine learning models are used to predict these closely related to friction energetic properties and link them to easily accessible atomistic and monolayer features. This approach elevates the materials' perspective of frictional properties. It demonstrates that data-driven models are extremely useful in discovering important structure-property functionalities for frictional property interpretations as a fruitful route toward desired tribological materials.

6.
ACS Appl Mater Interfaces ; 16(31): 40992-41004, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39066694

RESUMO

Intercalating linear-organic-ions into the MoS2 interlayer is beneficial for optimizing electrons/ions' capacitive storage behavior. The chain length, as an important parameter of linear organic ions, can lead to differences in the dispersion, polarity, critical micelle concentration of organic ions, and steric hindrance to the growth of MoS2 nanosheets. Up until now, the relationship between chain length, synthesis of intercalated-MoS2, and capacitive energy storage has not been unveiled. Herein, we have designed an in situ-intercalation route that is simple, efficient, and high yield for inserting four types of linear organic ions into the interlayer of MoS2 to synthesize four types of in situ-intercalated MoS2 samples. After organic-ion intercalation, the expanded interlayer spacing achieved the introduction of intercalation-type pseudocapacitors, as confirmed by ex situ XRD. Improved extra capacitance is verified due to the enlarged ion storage space from a synergistic spatial effect in the broken-shell-hollow ball. Additionally, the generation of high-valent Mo (+5 and +6) and S-vacancies is beneficial for energy storage. More importantly, according to density functional theory (DFT) calculations, as the chain length increases, the number of negative adsorption sites and the total adsorption ability also increase, leading to significantly improved specific capacitance. This work will provide an archetype for the preparation of in situ-intercalated layered materials and unveil capacitive energy storage that relies on the organic-ion chain length.

7.
Small ; : e2401979, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011940

RESUMO

Van der Waals heterostructures formed by stacked 2D materials show exceptional electronic, mechanical, and optical properties. Superlubricity, a condition where atomically flat, incommensurate planes of atoms result in ultra-low friction, is a prime example enabling, for example, self-assembly of optically visible graphene nanostructures in air via a sliding auto-kirigami process. Here, it is demonstrated that a subtle but ubiquitous adsorbate stripe structure found on graphene and graphitic surfaces in ambient conditions remains stable within the interface between twisted graphene layers as they slide over each other. Despite this contamination, the interface retains an exceptional superlubricious state with an estimated upper bound frictional shear strength of 10 kPa, indicating that direct atomic incommensurate contact is not required to achieve ambient superlubricity for 2D materials. The results suggest that any phenomena depending on 2D heterostructure interfaces such as exotic electronic behavior may need to consider the presence of stripe adsorbate structures that remain intercalated.

8.
ChemSusChem ; : e202400434, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884447

RESUMO

Utilizing photocatalytic CO2 reduction presents a promising avenue for combating climate change and curbing greenhouse gas emissions. However, maximizing its potential hinges on the development of materials that not only enhance efficiency but also ensure process stability. Here, we introduce Hiroshima University Silicate-7 (HUS-7) with immobilized Ti species as a standout contender. Our study demonstrates the remarkable photocatalytic activity of HUS-7 in CO2 reduction, yielding substantially higher carbonaceous product yields compared to conventional titanium-based catalysts TS-1 and P25. Through thorough characterization, we elucidate that their boosted photocatalytic performance is attributed to the incorporation of isolated Ti species within the silica-based precursor, serving as potent photoinduced active sites. Moreover, our findings underscore the crucial role of the Ligand-to-Metal Charge Transfer (LMCT) process in facilitating the photoactivation of CO2 molecules, shedding new light on key mechanisms underlying photocatalytic CO2 reduction.

9.
Adv Mater ; 36(31): e2402924, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857474

RESUMO

Layered perovskites consist of stacks of inorganic semiconducting metal-halide octahedra lattices sandwiched between organic layers with typically dielectric behavior. The in-plane confinement of electrical carriers in such two-dimensional metal halide perovskites drives a large range of appealing electronic properties, such as strong exciton binding, anisotropic charge diffusion, and polarization-directionality. Heterostructures provide additional control on carrier diffusion and localization, and in-plane heterojunctions are interesting because of the associated high charge mobility. Here, this work demonstrates a versatile solution-based approach to fabricate in-plane heterostructures with different halide composition in two-dimensional lead-halide perovskite microcrystals. This leads to spatially separated halide phases with different band gap and light emission. Interestingly, the composition of the exchanged phase and the morphology of the phase boundary depends on the exchange route, which can be related to the preferred localization of the halides at the equatorial or axial octahedra positions that either leads to dissolution and recrystallization of the octahedra lattice (for bromide to iodide), or allows for ion diffusion within the lattice (for iodide to bromide). These detailed insights on the ion exchange processes in layered perovskites will stimulate the development of heterostructures that can be tailored for different applications such as photocatalysis, energy storage, and light emission.

10.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921901

RESUMO

A novel nano-laminated GdB2C2 material was successfully synthesized using GdH2, B4C, and C via an in situ solid-state reaction approach for the first time. The formation process of GdB2C2 was revealed based on the microstructure and phase evolution investigation. Purity of 96.4 wt.% GdB2C2 was obtained at a low temperature of 1500 °C, while a nearly fully pure GdB2C2 could be obtained at a temperature over 1700 °C. The as-obtained GdB2C2 presented excellent thermal stability at a high temperature of 2100 °C in Ar atmosphere due to the stable framework formed by the high-covalence four-member and eight-member B-C rings in GdB2C2. The GdB2C2 material synthesized at 1500 °C demonstrated a remarkably low minimum reflection loss (RLmin) of -47.01 dB (3.44 mm) and a broad effective absorption bandwidth (EAB) of 1.76 GHz. The possible electromagnetic wave absorption (EMWA) mechanism could be ascribed to the nano-laminated structure and appropriate electrical conductivity, which facilitated good impedance matching, remarkable conduction loss, and interfacial polarization, along with the reflection and scattering of electromagnetic waves at multiple interfaces. The GdB2C2, with excellent EMWA performance as well as remarkable ultra-high-temperature thermal stability, could be a promising candidate for the application of EMWA materials in extreme ultra-high temperatures.

11.
ACS Nano ; 18(26): 17349-17358, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889099

RESUMO

Multiple polytypes of MoTe2 with distinct structures and intriguing electronic properties can be accessed by various physical and chemical approaches. Here, we report electrochemical lithium (Li) intercalation into 1T'-MoTe2 nanoflakes, leading to the discovery of two previously unreported lithiated phases. Distinguished by their structural differences from the pristine 1T' phase, these distinct phases were characterized using in situ polarization Raman spectroscopy and in situ single-crystal X-ray diffraction. The lithiated phases exhibit increasing resistivity with decreasing temperature, and their carrier densities are two to 4 orders of magnitude smaller than the metallic 1T' phase, as probed through in situ Hall measurements. The discovery of these gapped phases in initially metallic 1T'-MoTe2 underscores electrochemical intercalation as a potent tool for tuning the phase stability and electron density in two-dimensional (2D) materials.

12.
Adv Mater ; : e2312918, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821561

RESUMO

The intercalation of layered materials offers a flexible approach for tailoring their structures and generating unexpected properties. This review provides perspectives on the chemical intercalation of layered materials, including graphite/graphene, transition metal dichalcogenides, MXenes, and some particular materials. The characteristics of the different intercalation methods and their chemical mechanisms are discussed. The influence of intercalation on the structural changes of the host materials and the structural change how to affect the intrinsic properties of the intercalation compounds are discussed. Furthermore, a perspective on the applications of intercalation compounds in fields such as energy conversion and storage, catalysis, smart devices, biomedical applications, and environmental remediation is provided. Finally, brief insights into the challenges and future opportunities for the chemical intercalation of layered materials are provided.

13.
Small ; : e2401413, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733238

RESUMO

Advancing the field of photocatalysis requires the elucidation of structural properties that underpin the photocatalytic properties of promising materials. The focus of the present study is layered, Bi-rich bismuth oxyhalides, which are widely studied for photocatalytic applications yet poorly structurally understood, due to high levels of disorder, nano-sized domains, and the large number of structurally similar compounds. By connecting insights from multiple scattering techniques, utilizing electron-, X-ray- and neutron probes, the crystal phase of the synthesized materials is allocated as layered Bi24O31X10 (X = Cl, Br), albeit with significant deviation from the reported 3D crystalline model. The materials comprise anisotropic platelet-shaped crystalline domains, exhibiting significant in-plane ordering in two dimensions but disorder and an ultra-thin morphology in the layer stacking direction. Increased synthesis pH tailored larger, more ordered crystalline domains, leading to longer excited state lifetimes determined via femtosecond transient absorption spectroscopy (fs-TAS). Although this likely contributes to improved photocatalytic properties, assessed via the photooxidation of benzylamine, increasing the overall surface area facilitated the most significant improvement in photocatalytic performance. This study, therefore, enabled both phase allocation and a nuanced discussion of the structure-property relationship for complicated, ultra-thin photocatalysts.

14.
ACS Appl Mater Interfaces ; 16(15): 19330-19339, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568007

RESUMO

Layered materials have become indispensable in the development of two-dimensional (2D) systems, offering extensive specific surface area and exceptional electrical, electrochemical, and optical properties critical for diverse applications in energy storage, catalysis, sensing, and optoelectronics. While mono- and biatomic layered materials have demonstrated remarkable characteristics in lower dimensions, the quest for complexity in materials has opened new avenues for tailoring properties to specific requirements. Within this context, misfit-layered compounds (MLCs) stand out as promising candidates. In this study, we present a successful synthesis of few-layered misfit CaCoO2-CoO2 2D nanosheets in bulk quantities from bulk calcium cobalt oxide (CCO-B or CCO). These newly synthesized 2D exfoliated misfit nanosheets demonstrate remarkable 7-fold electrochemical energy storage properties, surpassing their parent bulk CCO, as cathode materials in aqueous Zn-ion batteries. This work addresses the longstanding challenge of exfoliating bulk MLCs to nanostructured, lower dimensional MLCs, opening doors for utilization in advanced energy storage systems and beyond.

15.
Adv Mater ; 36(24): e2310015, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450812

RESUMO

Negative-differential-resistance (NDR) devices offer a promising pathway for developing future computing technologies characterized by exceptionally low energy consumption, especially multivalued logic computing. Nevertheless, conventional approaches aimed at attaining the NDR phenomenon involve intricate junction configurations and/or external doping processes in the channel region, impeding the progress of NDR devices to the circuit and system levels. Here, an NDR device is presented that incorporates a channel without junctions. The NDR phenomenon is achieved by introducing a metal-insulator-semiconductor capacitor to a portion of the channel area. This approach establishes partial potential barrier and well that effectively restrict the movement of hole and electron carriers within specific voltage ranges. Consequently, this facilitates the implementation of both a ternary inverter and a ternary static-random-access-memory, which are essential components in the development of multivalued logic computing technology.

16.
Small ; 20(24): e2400938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488737

RESUMO

Mechanoresponsive materials have been studied to visualize and measure stresses in various fields. However, the high-sensitive and spatiotemporal imaging remain a challenging issue. In particular, the time evolutional responsiveness is not easily integrated in mechanoresponsive materials. In the present study, high-sensitive spatiotemporal imaging of weak compression stresses is achieved by time-evolutional controlled diffusion processes using conjugated polymer, capsule, and sponge. Stimuli-responsive polydiacetylene (PDA) is coated inside a sponge. A mechanoresponsive capsule is set on the top face of the sponge. When compression stresses in the range of 6.67-533 kPa are applied to the device, the blue color of PDA is changed to red by the diffusion of the interior liquid containing a guest polymer flowed out of the disrupted capsule. The applied strength (F/N), time (t/s), and impulse (F·t/N s) are visualized and quantified by the red-color intensity. When a guest metal ion is intercalated in the layered structure of PDA to tune the responsivity, the device visualizes the elapsed time (τ/min) after unloading the stresses. PDA, capsule, and sponge play the important roles to achieve the time evolutional responsiveness for the high-sensitive spatiotemporal distribution imaging through the controlled diffusion processes.

17.
Sci Rep ; 14(1): 5146, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429525

RESUMO

Integrating two-dimensional (2D) layered materials with wide bandgap ß-Ga2O3 has unveiled impressive opportunities for exploring novel physics and device concepts. This study presents the epitaxial growth of 2D ß-In2Se3/3D ß-Ga2O3 heterostructures on c-Sapphire substrates by plasma-assisted molecular beam epitaxy. Firstly, we employed a temperature-dependent two-step growth process to deposit Ga2O3 and obtained a phase-pure ( 2 ¯ 01 ) ß-Ga2O3 film on c-Sapphire. Interestingly, the in-situ reflective high-energy electron diffraction (RHEED) patterns observed from this heterostructure revealed the in-plane 'b' lattice constant of ß-Ga2O3 ~ 3.038Å. In the next stage, for the first time, 2D In2Se3 layers were epitaxially realized on 3D ß-Ga2O3 under varying substrate temperatures (Tsub) and Se/In flux ratios (RVI/III). The deposited layers exhibited (00l) oriented ß-In2Se3 on ( 2 ¯ 01 ) ß-Ga2O3/c-Sapphire with the epitaxial relationship of [ 11 2 ¯ 0 ] ß-In2Se3 || [010] ß-Ga2O3 and [ 10 1 ¯ 0 ] ß-In2Se3 || [102] ß-Ga2O3 as observed from the RHEED patterns. Also, the in-plane 'a' lattice constant of ß-In2Se3 was determined to be ~ 4.027Å. The single-phase ß-In2Se3 layers with improved structural and surface quality were achieved at a Tsub ~ 280 °C and RVI/III ~ 18. The microstructural and detailed elemental analysis further confirmed the epitaxy of 2D layered ß-In2Se3 on 3D ß-Ga2O3, a consequence of the quasi-van der Waals epitaxy. Furthermore, the ß-Ga2O3 with an optical bandgap (Eg) of ~ 5.04 eV (deep ultraviolet) when integrated with 2D ß-In2Se3, Eg ~ 1.43eV (near infra-red) can reveal potential applications in the optoelectronic field.

18.
ACS Appl Mater Interfaces ; 16(13): 16445-16452, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528798

RESUMO

Zero-valent intercalation of atomic metals into the van der Waals gap of layered materials can be used to tune their electronic, optical, thermal, and mechanical properties. Here, we report the impact of intercalating ∼3 atm percent of zero-valent copper into germanium sulfide (GeS). Advanced many-body calculations predict that copper introduces quasi-localized intermediate band states, and time-resolved THz spectroscopy studies demonstrate that those states have prominent effects on the photoconductivity of GeS. Cu-intercalated GeS exhibits a faster rise of transient photoconductivity and a shorter lifetime of optically injected carriers following near-gap excitation with 800 nm pulses. At the same time, Cu intercalation improves free carrier mobility from 1100 to 1300 cm2 V-1 s-1, which we attribute to the damping of acoustic phonons observed in Brillouin scattering and consequent reduction of phonon scattering.

19.
Chempluschem ; 89(6): e202300758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38314614

RESUMO

We investigate the molecular mechanism underlying the liquid-phase exfoliation of graphene in aqueous/N-methyl-2-pyrrolidone (NMP) solvent mixtures and calculate the associated free energies, considering different NMP concentrations and exfoliation temperatures. We employ steered molecular dynamics to establish a path for the exfoliation of a graphene sheet from graphite within each solvent environment. Then, we conduct umbrella sampling simulations throughout the created paths to compute the potential of mean force (PMF) of the graphene sheet. As the exfoliated nanosheet disperses into the liquid, it becomes fully covered by an adsorbed solvent monolayer. We analyze the composition of the monolayer by measuring the direct contacts of either NMP or water molecules with the carbon surface. The carbon surface exhibits a preference for adsorbing NMP over water. The NMP molecules form a hydrophobic compact monolayer structure, effectively protecting the carbon interface from unfavorable interactions with water. The creation of the hydrophobic monolayer is a key factor in the exfoliation process, as it effectively inhibits the restacking of exfoliated nanosheets. An adequate level of graphene solubility is achieved through the addition of 20 % to 30 % water by weight to the NMP solvent. This finding holds significant importance for improving production efficiency and reducing dependence on organic solvents in the industrial manufacturing of graphene.

20.
Ultrason Sonochem ; 104: 106814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382394

RESUMO

To maintain human health, the development of rapid uric acid (UA) sensing is crucial. In this study, defective black phosphorus nanosheets with black phosphorus quantum dots (dBPN/BPQDs) were successfully and rapidly prepared by sonoelectrochemical exfoliation. In this process, the intercalation of phosphate ions into the black phosphorus working electrode was improved by coupling ultrasonic radiation with a high intercalating potential (8 V vs. Ag/AgCl/3M). The dBPN/BPQDs with various vacancies (5-9 defects, 5-7-7-5 defects, and 5-8-5 defect vacancies) exhibited a remarkable mass activity (jm, 1.22 × 10-3 mA µg-1) for uric acid oxidation, which was 5.92 times greater than that of reduced graphene oxide (rGO) (2.06 × 10-4 mA µg-1). In addition, the sensitivity of the dBPN/BPQD UA sensor was 474.2 µA mM-1 cm-2 in the linear analysis range of 0.1-1.3 mM. The sensitivity of the sensor was apparently higher than 67.7 µA mM-1cm-2 for rGO. The data from real sample experiments using serum showed that the dBPN/BPQD catalyst had high recoveries (97.3 %-100.2 %) and low related standard deviation (0.44 %-1.52 %). The dBPN/BPQDs exhibited the potential as an amperometric sensor to detect UA without needing enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA