Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39373328

RESUMO

Due to the limitation of the diffusion kinetics of organic amine salts on the PbI2 layer in the two-step method, prepared perovskite particles are small in size, have many defects, and are randomly oriented, and the cell efficiency and stability are difficult to guarantee due to PbI2 residues. Here, we added a volatile additive, N,N,N',N'-tetramethylethylenediamine (TMEDA), to the PbI2 precursor solution and formed preaggregated atomic clusters with PbI2 through TMEDA, which reduced the Gibbs free energy of nucleation to obtain a porous PbI2 layer, and finally obtained a perovskite film with large particles, few defects, ideal crystal plane orientation, and no additive residues. The results show that the photoelectric conversion efficiency of the optimized device is increased by 1.68% (from 21.68% to 23.36%), and the unpackaged optimized device still maintains the maximum efficiency of 77% after being placed in the air for 1200 h. This study provides an effective way to fabricate efficient and stable perovskite solar cells by promoting the nucleation-induced crystallization orientation by volatile additives.

2.
ACS Appl Mater Interfaces ; 16(31): 40927-40935, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39044357

RESUMO

Formamidinium lead iodide (FAPI) represents the most promising perovskite for single junction solar cells, exhibiting an impressive performance when deposited in a controlled nitrogen environment. In order to foster the real-world application of this technology, the deposition of FAPI in ambient air is a highly desirable prospect, as it would reduce fabrication costs. This study demonstrates that the wettability of FAPI precursors on the hole transporting layers (HTL) used to fabricate inverted p-i-n solar cells is extremely poor in ambient air, hampering the realization of a perovskite active layer with good optoelectronic quality. To address this issue, herein, a double compatibilization method is developed, which results in the attainment of remarkable performance, exceeding 21%, representing one of the highest reported efficiencies for FAPI solar cells fabricated in humid ambient air. The incorporation of a small quantity of anionic surfactant, comprising a hydrocarbon tail and a polar headgroup, sodium dodecyl sulfate (SDS), in the perovskite solution and an ultrathin layer of alumina nanoparticles on the HTL, results in a significant improvement in the wettability of the FAPI solution. This enables the reproducible deposition of highly homogeneous perovskite films with complete coverage and excellent optical and optoelectronic quality. Furthermore, devices based on FAPI with SDS exhibit enhanced stability, retaining 98% of their initial efficiency after 40 h of continuous illumination.

3.
Small ; : e2403566, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949415

RESUMO

Amidino-based additives show great potential in high-performance perovskite solar cells (PSCs). However, the role of different functional groups in amidino-based additives have not been well elucidated. Herein, two multifunctional amidino additives 4-amidinobenzoic acid hydrochloride (ABAc) and 4-amidinobenzamide hydrochloride (ABAm) are employed to improve the film quality of formamidinium lead iodide (FAPbI3) perovskites. Compared with ABAc, the amide group imparts ABAm with larger dipole moment and thus stronger interactions with the perovskite components, i.e., the hydrogen bonds between N…H and I- anion and coordination bonds between C = O and Pb2+ cation. It strengthens the passivation effect of iodine vacancy defect and slows down the crystallization process of α-FAPbI3, resulting in the significantly reduced non-radiative recombination, long carrier lifetime of 1.7 µs, uniformly large crystalline grains, and enhances hydrophobicity. Profiting from the improved film quality, the ABAm-treated PSC achieves a high efficiency of 24.60%, and maintains 93% of the initial efficiency after storage in ambient environment for 1200 hours. This work provides new insights for rational design of multifunctional additives regarding of defect passivation and crystallization control toward highly efficient and stable PSCs.

4.
Small ; : e2404058, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873880

RESUMO

Blade-coating stands out as an alternative for fabricating scalable perovskite solar cells. However, it demands special control of the precursor composition regarding nucleation and crystallization and currently exhibits lower performance than the spin-coating process. It is mainly the resulting film morphology and excess lead iodide (PbI2) distribution that influences the optoelectronic properties. Here, the effectiveness of introducing N-Methyl-2-pyrrolidone (NMP) to regulate the structure of the perovskite layer and the redistribution of PbI2 is found. The introduction of NMP leads to the accumulation of excess PbI2, mainly on the top surface, reducing residual PbI2 at the perovskite buried interface. This not only facilitates the passivation of perovskite grain boundaries but also eliminates the potential degradation of the PbI2 triggered by light illumination in the perovskite buried interface. The optimized NMP-modified inverted perovskite solar cell achieves a champion efficiency of 24.5%, among the highest reported blade-coated perovskite solar cells. Furthermore, 13.68 cm2 blading perovskite solar modules are fabricated and demonstrate an efficiency of up to 20.4%. These findings underscore that with proper modulation of precursor composition, blade-coating can be a feasible and superior alternative for manufacturing high-quality perovskite films, paving the way for their large-scale applications in photovoltaic technology.

5.
Chemistry ; 30(38): e202401283, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38695306

RESUMO

Understanding the interaction between fullerene (C60) and perovskite surfaces is pivotal for advancing the efficiency and stability of perovskite solar cells. In this study, we investigate the adsorption behavior of C60 on methylammonium lead iodide (MAPbI3) surfaces using periodic density functional theory calculations. We explore various surface terminations and defect configurations to elucidate the influence of surface morphology on the C60-perovskite interaction, computing the adsorption energy and transfer of charge. Our results reveal distinct adsorption energies and charge transfer mechanisms for different surface terminations, shedding light on the role of surface defects in modifying the electronic structure and stability of perovskite materials. Furthermore, we provide insights into the potential of C60 to passivate surface defects, playing a relevant role in the surface reconstruction after the formation of defects. This comprehensive understanding of C60-perovskite interactions offers valuable guidelines about the role of fullerenes on surface structure and reconstruction.

6.
ACS Appl Mater Interfaces ; 16(21): 27936-27943, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743851

RESUMO

Copper oxide appears to be a promising candidate for a hole transport layer (HTL) in emerging perovskite solar cells. Reasons for this are its good optical and electrical properties, cost-effectiveness, and high stability. However, is this really the case? In this study, we demonstrate that copper oxide, synthesized by a spray-coating method, is unstable in contact with formamidinium lead triiodide (FAPI) perovskite, leading to its decomposition. Using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) spectrophotometry, we find that the entire copper oxide diffuses into and reacts with the FAPI film completely. The reaction products are an inactive yellow δ-FAPI phase, copper iodide (CuI), and an additional new phase of copper formate hydroxide (CH2CuO3) that has not been reported previously in the literature.

7.
Adv Mater ; 36(31): e2401476, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602334

RESUMO

While significant efforts in surface engineering have been devoted to the conversion process of lead iodide (PbI2) into perovskite and top surface engineering of perovskite layer with remarkable progress, the exploration of residual PbI2 clusters and the hidden bottom surface on perovskite layer have been limited. In this work, a new strategy involving 1-butyl-3-methylimidazolium acetate (BMIMAc) ionic liquid (IL) additives is developed and it is found that both the cations and the anions in ILs can interact with the perovskite components, thereby regulating the crystallization process and diminishing the residue PbI2 clusters as well as filling vacancies. The introduction of BMIMAc ILs induces the formation of a uniform porous PbI2 film, facilitating better penetration of the second-step organic salt and fostering a more extensive interaction between PbI2 and the organic salt. Surprisingly, the oversized residual PbI2 clusters at the bottom surface of the perovskite layer completely diminish. In addition, advanced depth analysis techniques including depth-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) and bottom thinning technology are employed for a comprehensive understanding of the reduction in residual PbI2. Leveraging effective PbI2 management and regulation of the perovskite crystallization process, the champion devices achieve a power conversion efficiency (PCE) of 25.06% with long-term stability.

8.
Angew Chem Int Ed Engl ; 63(26): e202402568, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38650435

RESUMO

The inefficient conversion of lead iodide to perovskite has become one of the major challenges in further improving the performance of perovskite solar cells fabricated by the two-step method. Herein, the discontinuous lead iodide layer realized by introduction of a polyfluorinated organic diammonium salt, octafluoro-([1,1'-biphenyl]-4,4'-diyl)-dimethanaminium (OFPP) iodide which does not form low-dimensional perovskites, can enable the satisfactory conversion of lead iodide into perovskite, leading to meliorated crystallinity and enlarged grains in the OFPP modulated perovskite (OFPP-PVK) film. Combined with the effective defect passivation, the OFPP-PVK films show enhanced charge mobility and suppressed charge recombination. Accordingly, the OFPP-based perovskite solar cells exhibit a champion efficiency of 24.76 % with better device stability. Moreover, a superior efficiency of 21.04 % was achieved in a large-area perovskite module (100 cm2). Our work provides a unique insight into the function of organic diammonium additive in boosting photovoltaic performance.

9.
Angew Chem Int Ed Engl ; 63(16): e202401260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372399

RESUMO

Formamidinium lead iodide (FAPbI3) represents an optimal absorber material in perovskite solar cells (PSCs), while the application of FAPbI3 in inverted-structured PSCs has yet to be successful, mainly owing to its inferior film-forming on hydrophobic or defective hole-transporting substrates. Herein, we report a substantial improvement of FAPbI3-based inverted PSCs, which is realized by a multifunctional amphiphilic molecular hole-transporter, (2-(4-(10H-phenothiazin-10-yl)phenyl)-1-cyanovinyl)phosphonic acid (PTZ-CPA). The phenothiazine (PTZ) based PTZ-CPA, carrying a cyanovinyl phosphonic acid (CPA) group, forms a superwetting hole-selective underlayer that enables facile deposition of high-quality FAPbI3 thin films. Compared to a previously established carbazole-based hole-selective material (2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl)phosphonic acid (MeO-2PACz), the crystallinity of FAPbI3 is enhanced and the electronic defects are passivated by the PTZ-CPA more effectively, resulting in remarkable increases in photoluminescence quantum yield (four-fold) and Shockley-Read-Hall lifetime (eight-fold). Moreover, the PTZ-CPA shows a larger molecular dipole moment and improved energy level alignment with FAPbI3, benefiting the interfacial hole-collection. Consequently, FAPbI3-based inverted PSCs achieve an unprecedented efficiency of 25.35 % under simulated air mass 1.5 (AM1.5) sunlight. The PTZ-CPA based device shows commendable long-term stability, maintaining over 90 % of its initial efficiency after continuous operation at 40 °C for 2000 hours.

10.
ACS Appl Mater Interfaces ; 16(3): 3532-3541, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38225868

RESUMO

Triboelectric nanogenerators (TENGs) have attracted a great deal of attention since they can convert ubiquitous mechanical energy into electrical energy and serve as a continuous power source for self-powered sensors. Optimization of the dielectric material composition is an effective way to improve the triboelectric output performance of TENGs. Herein, the hybrid organic-inorganic lead-iodide perovskite Cs0.05FA0.95-xMAxPbI3 was prepared by blade coating and used as a positive friction layer material. Moreover, PVDF-graphene (PG) nanofibers were prepared as negative friction layer materials by electrostatic spinning. The output performance of the TENG was enhanced by varying the MA content of the pervoskite films and the graphene content of the PG nanofibers. The champion output TENG based on Cs0.05FA0.9MA0.05PbI3/PG-0.15 achieved an open-circuit voltage of 245 V, a short-circuit current of 24 µA, and a charge transfer of 80.2 nC. Meanwhile, a maximum power density of 11.23 W m-2 was obtained at 100 MΩ. Moreover, the device exhibits excellent energy-harvesting properties, including excellent stability and durability, rapidly charges capacitors, and lights commercial LEDs and digital tubes.

11.
Small ; 20(26): e2304787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243886

RESUMO

In the quest for advanced memristor technologies, this study introduces the synthesis of delta-formamidinium lead iodide (δ-FAPbI3) nanoparticles (NPs) and their self-assembly into nanorods (NRs). The formation of these NRs is facilitated by iodide vacancies, promoting the fusion of individual NPs at higher concentrations. Notably, these NRs exhibit robust stability under ambient conditions, a distinctive advantage attributed to the presence of capping ligands and a crystal lattice structured around face-sharing octahedra. When employed as the active layer in resistive random-access memory devices, these NRs demonstrate exceptional bipolar switching properties. A remarkable on/off ratio (105) is achieved, surpassing the performances of previously reported low-dimensional perovskite derivatives and α-FAPbI3 NP-based devices. This enhanced performance is attributed to the low off-state current owing to the reduced number of halide vacancies, intrinsic low dimensionality, and the parallel alignment of NRs on the FTO substrate. This study not only provides significant insights into the development of superior materials for memristor applications but also opens new avenues for exploring low-dimensional perovskite derivatives in advanced electronic devices.

12.
Small ; 20(4): e2304273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705459

RESUMO

Considering the direct influence of substrate surface nature on perovskite (PVK) film growth, buried interfacial engineering is crucial to obtain ideal perovskite solar cells (PSCs). Herein, 1-(3-aminopropyl)-imidazole (API) is introduced at polytriarylamine (PTAA)/PVK interface to modulate the bottom property of PVK. First, the introduction of API improves the growth of PVK grains and reduces the Pb2+ defects and residual PbI2 present at the bottom of the film, contributing to the acquisition of high-quality PVK film. Besides, the presence of API can optimize the energy structure between PVK and PTAA, which facilitates the interfacial charge transfer. Density functional theory (DFT) reveals that the electron donor unit (R-C ═ N) of the API prefers to bind with Pb2+ traps at the PVK interface, while the formation of hydrogen bonds between the R-NH2 of API and I- strengthens the above binding ability. Consequently, the optimum API-treated inverted formamidinium-cesium (FA/Cs) PSCs yields a champion power conversion efficiency (PCE) of 22.02% and exhibited favorable stability.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123779, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128323

RESUMO

Multidimensional ABX3 hybrid perovskites three-dimensionally confined dot-shaped structure demonstrate versatile potential to photoelectrochemical cells for water splitting, hydrogen generation, solar cells, and light-emitting diodes. To apply perovskite quantum dots (PQDs) to solar-driven chemistry and optoelectronic devices, understanding the photoinduced charge carrier dynamics of PQDs under electrochemical conditions or applied bias are important. In this study, the detailed transformation mechanism of formamidinium lead iodide perovskite quantum dots under electrochemical conditions was studied by tracking the products of the reaction through cyclic voltammetry, X-ray photoemission spectroscopy, in-situ UV-visible spectroelectrochemistry, etc. Through comprehensive characterizations, the mechanism of irreversible oxidative transformation of perovskite quantum dots was presented. This study provides deeper insight into the electrochemical behavior of PQDs for successful solar-driven chemistry and optoelectronic device applications.

14.
ACS Appl Mater Interfaces ; 15(37): 43822-43834, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37672479

RESUMO

Uniform optoelectronic quality of metal halide perovskite (MHP) films is critical for scalable production in large-area applications, such as photovoltaics and displays. While vapor-based MHP film deposition is advantageous for this purpose, achieving film uniformity can be challenging due to uneven temperature distribution and precursor concentration over the substrate. Here, we propose optimized substrate orientations for the vapor-based fabrication of homogeneous MAPbI3 thin films, involving a PbI2 primary layer deposition and subsequent conversion using vaporized methylammonium iodide (MAI). Leveraging computational fluid dynamics (CFD) simulations, we confirm that vertical positioning during the PbI2 layer growth yields a uniform film with a narrow temperature distribution and minimal boundary layer thickness. However, during the subsequent conversion step, horizontal substrate positioning results in spatially more uniform MAPbI3 thickness and grain size compared to the vertical placement due to enhanced MAI intercalation. From this optimized substrate positioning, we observe substantial optical homogeneity across the substrate on a centimeter scale, along with uniform and enhanced optoelectronic device performance within photodetector arrays. Our results offer a potential path toward the scalable production of highly uniform perovskite films.

15.
Micromachines (Basel) ; 14(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630137

RESUMO

The phase change of all-inorganic cesium lead halide (CsPbI3) thin film from yellow δ-phase to black γ-/α-phase has been a topic of interest in the perovskite optoelectronics field. Here, the main focus is how to secure a black perovskite phase by avoiding a yellow one. In this work, we fabricated a self-doped CsPbI3 thin film by incorporating an excess cesium iodide (CsI) into the perovskite precursor solution. Then, we studied the effect of organic additive such as 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN), and 1,8-octanedithiol (ODT) on the optical, structural, and morphological properties. Specifically, for elucidating the binary additive-solvent solution thermodynamics, we employed the Flory-Huggins theory based on the oligomer level of additives' molar mass. Resultantly, we found that the miscibility of additive-solvent displaying an upper critical solution temperature (UCST) behavior is in the sequence CN:DMF > ODT:DMF > DIO:DMF, the trends of which could be similarly applied to DMSO. Finally, the self-doping strategy with additive engineering should help fabricate a black γ-phase perovskite although the mixed phases of δ-CsPbI3, γ-CsPbI3, and Cs4PbI6 were observed under ambient conditions. However, the results may provide insight for the stability of metastable γ-phase CsPbI3 at room temperature.

16.
ACS Appl Mater Interfaces ; 15(35): 41516-41524, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37626018

RESUMO

We investigated triple-halide perovskite (THP) absorber layers with 5 mol % MAPbCl3 added to the double-halide perovskite (Cs0.22FA0.78)Pb(I0.85Br0.15)3. As a deposition method, a highly scalable printing technique, slot-die coating, with a subsequent annealing step was used. We found a strong power conversion efficiency (PCE) dependence of the corresponding solar cells on the annealing temperature. The device performance deteriorated when increasing the annealing temperature from 125 to 170 °C, mainly via losses in the open-circuit voltage (Voc) and in the fill factor (FF). To understand the mechanisms behind this performance loss, extensive characterizations were performed on both, the THP thin films and the completed solar-cell stacks, as a function of annealing temperature. Correlative scanning electron microscopy analyses, i.e., electron backscatter diffraction, energy-dispersive X-ray spectroscopy, and cathodoluminescence, in addition to X-ray diffraction and photoluminescence, confirmed the presence of PbI2 platelets on the surface of the THP thin films. Moreover, the area fraction of the PbI2 platelets on the film surface increased with increasing annealing temperature. The deteriorated device performance when the annealing temperature is increased from 125 to 170 °C is explained by the increased series resistance and increased interface recombination caused by the PbI2 platelets, leading to decreased Voc and FF values of the solar-cell devices. Thus, the correlative analyses provided insight into microscopic origins of the efficiency losses.

17.
Angew Chem Int Ed Engl ; 62(39): e202307395, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522562

RESUMO

Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2 ) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2 . Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000 hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.

18.
Chemphyschem ; 24(20): e202300400, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37488069

RESUMO

The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2 ) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3 NH3 PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3 NH3 PbI3 /C60 interface with the modification of PbI2 as compared to that without PbI2 . Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3 NH3 PbI3 /C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.

19.
Chemphyschem ; 24(18): e202300210, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394623

RESUMO

In this study, the features of resistive random access memory (RRAM) employing a straightforward Cr/MAPbI3 /FTO three-layer structure have been examined and clarified. The device displays various resistance switching (RS) behavior at various sweep voltages between 0.5 and 5 V. The RS effect has a conversion in the direction of the SET and RESET processes during sweeping for a number of cycles at a specific voltage. The directional change of the RS processes corresponds to the dominant transition between the generation/recombination of iodide ion and vacancy in the MAPbI3 perovskite layer and the electrochemical metallization of the Cr electrode under the influence of an electric field, which results in the conductive filament (CF) formation/rupture. At each stage, these processes are controlled by specific charge conduction mechanisms, including Ohmic conduction, space-charge-limited conduction (SCLC), and variable-range hopping (VRH). By identifying the biased voltage and the quantity of voltage sweep cycles, one can take a new approach to control or modulate the pathways for effective charge transport. This new approach is made possible by an understanding of the RS characteristics and the corresponding mechanisms causing the variation of RS behavior in the structure.

20.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374462

RESUMO

Perovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field. Since degradation processes are spatially heterogeneous, the behaviors of perovskite films under an applied electric field should be visualized with nanoscale resolution. Herein, we report a direct nanoscale visualization of methylammonium (MA+) cation dynamics in methylammonium lead iodide (MAPbI3) films during field-induced degradation, using infrared scattering-type scanning near-field microscopy (IR s-SNOM). The obtained data reveal that the major aging pathways are related to the anodic oxidation of I- and the cathodic reduction of MA+, which finally result in the depletion of organic species in the channel of the device and the formation of Pb. This conclusion was supported by a set of complementary techniques such as time-of-flight secondary ion mass spectrometry (ToF-SIMS), photoluminescence (PL) microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved field-induced degradation dynamics of hybrid perovskite absorbers and the identification of more promising materials resistant to the electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA