RESUMO
GATA transcription factors are an important class of transcription factors in plants, known for their roles in tissue development, signal transduction, and responses to biotic and abiotic stresses. To date, there have been no reports on the GATA gene family in melon (Cucumis melo). In this study, 24 CmGATA genes were identified from the melon genome. These family members exhibit significant differences in protein length, molecular weight, and theoretical isoelectric point and are primarily located in the nucleus. Based on the classification of Arabidopsis thaliana GATA members, the phylogenetic tree divided them into four groups: group I, group II, group III, and group IV, containing 10, 8, 4, and 2 genes, respectively. Notably, CmGATA genes within the same group have highly conserved protein motifs and similar exon-intron structures. The CmGATA family members are unevenly distributed across 10 chromosomes, with six pairs of segmentally duplicated genes and one pair of tandemly duplicated genes, suggesting that gene duplication may be the primary factor in the expansion of the CmGATA family. Melon shares 21, 4, 38, and 34 pairs of homologous genes with A. thaliana, Oryza sativa, Cucumis sativus, and Citrullus lanatus, respectively. The promoter regions are enriched with various cis-acting elements related to growth and development (eight types), hormone regulation (nine types), and stress responses (six types). Expression patterns indicate that different CmGATA family members are significantly expressed in seeds, roots, stems, leaves, tendrils, mesocarp, and epicarp, exhibiting distinct tissue-specific expression characteristics. Quantitative fluorescence analysis revealed that five genes, CmGATA3, CmGATA7, CmGATA16, CmGATA22, and CmGATA24, may be highly active under 48-h drought stress, while CmGATA1 and CmGATA22 may enhance melon resistance to heavy metal lead stress. Additionally, CmGATA22 and CmGATA24 are suggested to regulate melon resistance to Fusarium wilt infection. CmGATA22 appears to comprehensively regulate melon responses to both biotic and abiotic stresses. Lastly, potential protein interaction networks were predicted for the CmGATA family members, identifying CmGATA8 as a potential hub gene and predicting 2,230 target genes with enriched GO functions. This study preliminarily explores the expression characteristics of CmGATA genes under drought stress, heavy metal lead stress, and Fusarium wilt infection, providing a theoretical foundation for molecular mechanisms in melon improvement and stress resistance.
RESUMO
In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.
Assuntos
Quitosana , Chumbo , Estresse Oxidativo , Vicia faba , Vicia faba/efeitos dos fármacos , Vicia faba/genética , Vicia faba/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genéticaRESUMO
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
Assuntos
Antioxidantes , Cuminum , Antioxidantes/metabolismo , Cuminum/química , Cuminum/metabolismo , Chumbo/toxicidade , Metabolômica , Perfilação da Expressão GênicaRESUMO
Heavy metals (HMs) such as lead (Pb) pose a significant threat to global food security due to their adverse effect on the health of crop plants. Calcium (Ca) and Glutathione (GSH) are signaling molecules to scavenge free radicals in HM-stressed plants. In this study, GSH and Ca's role is examined in supporting canola seedlings against Pb toxicity. In a pot experiment, the administration of Glutathione (GSH, 0 and 100 µM) and/or calcium (CaCl2, 0 and 500 µM) in canola seedlings was examined under lead stress (0 and 100 µM of Pb(NO3)2. Compared with the control samples, Pb treatment increased MDA and H2O2 values by 61 and 53%, respectively, indicative of oxidative burst. However, using a combination of GSH and Ca lowered oxidative stress in Pb-stressed plants by an approximately twofold reduction in MDA and H2O2 content. Total PC content increased by 78% in Pb-stressed plants, suggesting that these chelating peptides diminish the damaging effects of Pb. Interestingly, further boosts in total PC levels were recorded in Pb-stressed plants treated with GSH and Ca concurrently. The addition of exogenous GSH and Ca to Pb-stressed canola plants limited Pb uptake and translocation and improved ascorbate-glutathione cycle performance. Moreover, compared to their separate usage, the co-treatment of exogenous GSH and Ca strengthened the GSH pool by increasing the activities of enzymes involved in GSH metabolism. The findings demonstrate that exogenous GSH and Ca modulate GSH synthesis, metabolism, and redox homeostasis synergistically to enhance resistance to oxidative stress generated by Pb.
Assuntos
Antioxidantes , Brassica napus , Antioxidantes/metabolismo , Cálcio/metabolismo , Chumbo/metabolismo , Regulação para Cima , Peróxido de Hidrogênio/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , PlântulaRESUMO
To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L-1 as PbCl2) applied through growth medium to two maize hybrids H-3310S and H-6724. The research findings indicated that growth and metabolic activities were adversely affected by increased Pb contamination in growth medium; however, a slow increase in these parameters was recorded with increasing time from 0 to 120 h. Protease activity decreased with an increase in the level of Pb contamination but increased with time; consequently, a reduction in seed proteins and an increase in total free amino acids were observed with time. Similarly, α-amylase activity decreased with an increase in Pb concentration in growth medium while it increased with increasing time from 0 to 120 h; consequently, reducing and non-reducing sugars increased with time but decreased with exposure to lead. The roots of both maize hybrids had higher Pb contents than those of the shoot, which decreased the uptake of nitrogen, phosphorus, and potassium. All these nutrients are essential for optimal plant growth; therefore, the reduction in growth and biomass of maize seedlings could be due to Pb toxicity that altered metabolic processes, as sugar and amino acids are necessary for the synthesis of metabolic compounds, rapid cell division, and proper functioning of enzymes in the growing embryo, but all were dramatically reduced due to suppression of protease and α-amylase by toxicity of Pb. In general, hybrid H-3310S performed better in Pb-contaminated growth medium than H-6724.
RESUMO
An important aspect of environmental pollution, lead contamination is a widespread problem in several ecosystems. The present study aimed to evaluate the potential effects of low concentration lead stress on the development and reproduction of Aleuroglyphus ovatus. They were fed with artificial diet containing four different concentrations of lead (12.5, 25, 50, and 100 mg/kg). The results showed that there were both accelerating effect of lead (at low concentrations), as well as retarding effects (at high concentrations) on the development of the mite, and lead stress significantly prolonged the immature stages of A. ovatus and this inhibitory effect was greater with greater lead concentrations. The immature stages in the L group were shorter than those in the S group. In the S and L groups, the oviposition periods were significantly longer in the treatments with lower lead concentrations than in the control, while they were significantly shorter in those treatments of higher lead concentrations. Age-specific survival rate (lx) started to decline earlier in the S group, whereas there were no differences between the L group and CK. Age-specific fecundity rate (mx) peaked earlier in the S group than in CK, while mx peaked later in L1 and L2 than in CK. The rm value and net reproduction rate (R0) of treated A. ovatus decreased with increasing lead concentrations. Lower lead concentrations could promote population expansion while higher concentrations could inhibit population size. These results confirmed the developmental effect of lead stress on A. ovatus, highlighting that heavy metal contamination has negative effects on organisms in their natural environment.
Assuntos
Acaridae , Afídeos , Ácaros , Animais , Feminino , Chumbo/toxicidade , Ecossistema , ReproduçãoRESUMO
Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection in the mite antioxidant defense system, involved in eliminating reactive oxygen species (ROS) under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported in stored grain pest mite (Aleuroglyphus ovatus). In this study, A. ovatus was used to evaluate the response of SOD gene during lead stress. A. ovatus were separately exposed to different concentration lead (12.5, 25, 50, and 100 mg/kg), which induce the dynamic trend of SOD enzyme activity initially increased and then reduced with an increase in lead concentration, whereas they were still substantially higher than the control group. Moreover, after lead stress, it was found that all of the three SOD genes showed enhanced relative messenger RNA expression at high concentrations and decreased relative expression at low concentrations, which indicated that lead stress induces the expression of AoSODs. The present work implies that AoSODs play an important role in resisting oxidative damage caused by lead stress.
RESUMO
The subclavian vein is typically used in cardiovascular implantable electronic device (CIED) implantations. External stress on the subclavian vein can lead to lead-related complications. There are several causes of this stress, such as frequent upper extremity movements or external injury. Venous thoracic outlet syndrome (TOS) can also become the cause of external lead stress. However, the diagnosis of venous TOS can be challenging because subclavian venography can appear normal at first glance. We present a unique case of a device infection in a patient with venous TOS. A careful observation of the imaging studies is vital for diagnosing venous TOS and a leadless pacemaker implantation could be an alternative therapeutic option.
RESUMO
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
RESUMO
Platycladus orientalis is a significant woody plant for phytoremediation in heavy metals contaminated soils. The growth and tolerance of host plants under the lead (Pb) stress were enhanced by arbuscular mycorrhizal fungi (AMF). To evaluate the adjustment by AMF on growth and activity of antioxidant system of P. orientalis under Pb stress. The two-factor pot experiment was conducted with three AM fungal treatments (noninoculated, Rhizophagus irregularis, and Funneliformis mosseae) and four Pb levels (0, 500, 1000, and 2000 mg kg-1). AMF increased dry weight, phosphorus uptake, root vitality, and total chlorophyll content of P. orientalis in spite of Pb stress. Compared with nonmycorrhizal treatments, mycorrhizal P. orientalis had lower H2O2 and malondialdehyde (MDA) contents under Pb stress. AMF increased Pb uptake in roots and decreased the Pb translating to the shoots yet under Pb stress. Total glutathione and ascorbate in roots of P. orientalis were decreased by AMF inoculation. Mycorrhizal P. orientalis had higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione S-transferase (GST) activities in shoots and roots than nonmycorrhizal counterparts. Mycorrhizal P. orientalis under Pb stress showed higher expression of PoGST1 and PoGST2 in roots than that in CK treatments. Future studies will explore the function of induced tolerance genes by AMF of P. orientalis under Pb stress.
Arbuscular mycorrhizal fungi (AMF) decreased the reduced toxicity of lead to Platycladus orientalis under lead stress, including improving growth, root activity, photosynthesis, and antioxidant system activity, while reducing its oxidative damage. At the same time, lead inhibited the symbiosis between AMF and Platycladus orientalis.
Assuntos
Micorrizas , Raízes de Plantas , Chumbo/toxicidade , Chumbo/metabolismo , Peróxido de Hidrogênio/metabolismo , Biodegradação AmbientalRESUMO
Worldwide, crop productivity is highly influenced by heavy metal toxicity. Lead (Pb) the is second-most toxic heavy metal that has high persistence in soil. Lead is translocated in plants from rhizosphere soil and enters the food chain, where it poses a significant hazard to the health of humans. In the present investigation, seed priming with triacontanol (Tria) was used to mitigate Pb phytotoxicity in Phaseolus vulgaris L. (common bean). Seeds were primed with different concentrations of Tria (control, 10 µmol L-1, 20 µmol L-1, 30 µmol L-1) solutions. The pot experiment was carried out by sowing Tria-primed seeds in contaminated soil with 400 mg kg-1 Pb. Lead alone induced a decrease in the rate of germination and a significant reduction in biomass and growth of P. vulgaris as compared to the control. All these negative effects were reversed by Tria-primed seeds. Proliferation of photosynthetic pigments was observed 1.8-fold by Tria under Pb stress. Primed seeds with 20 µmol L-1 Tria enhanced stomatal conductance (gs), photosynthetic rate (A), transpiration rate (Ei), and uptake of mineral contents (Mg+2, Zn+2, Na+, and K+) and reduced Pb accumulation in seedlings. Tria caused a 1.3-fold increase in osmotic regulator proline synthesis to alleviate Pb stress. Phenolics, soluble protein, and DPPH free radical scavenging activity were enhanced by Tria application, suggesting that exogenous Tria could be employed to improve plant tolerance to Pb stress.
RESUMO
BACKGROUND: Among the heavy metal pollution in soil, lead pollution is particularly prominent. The lead in contaminated soil will not only cause damage to plants, animals and microorganisms, but also seriously affect the progress of the entire ecosystem. Under lead stress, the abundance of DnaJ protein in plants will increase. However, little is known about the role of DnaJ in lead stress. METHODS AND RESULTS: We used transgenic Arabidopsis that overexpressed DnaJ gene ZjDjB1 of Zostera japonica as material to study the role of DnaJ in the mechanism of lead induced stress response. Under lead stress, the seedlings and adult plants of transgenic ZjDjB1 Arabidopsis have higher tolerance to lead stress than wild type. Under lead stress, the content of NO and O2·- free radicals in transgenic ZjDjB1 Arabidopsis was lower than that of wild type. The negative effect of catalase in transgenic ZjDjB1 Arabidopsis under lead stress was weaker than that of wild type. The expression of ABC transporter of mitochondrion 3 (ATM3; systematic name: ABCB25) in transgenic ZjDjB1 Arabidopsis under lead stress was higher than that in wild type. CONCLUSIONS: These results confirmed that ZjDjB1, the DnaJ gene of Z. japonica, was involved in the reaction mechanism to lead pollution, which might improve the tolerance of plants to lead stress by maintaining catalase activity and increasing the expression level of ATM3 under lead stress.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zosteraceae , Arabidopsis/metabolismo , Catalase/metabolismo , Zosteraceae/genética , Ecossistema , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Solo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMO
Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover.
RESUMO
Lead is one of the most common toxic heavy metal pollutants in nature, and exposure to lead can cause serious toxicity to many organisms. In this study, we collected root growth data from soybean plants exposed to lead for seven days and confirmed that lead significantly inhibited root growth. We performed a transcriptome-wide m6A methylation analysis to study the response of soybean RNA methylation groups to lead. The m6A modified regions were enriched near the 3'UTR region and stop codon, and m6A methylation was positively correlated with transcript abundance. In the presence of lead, the transcriptome range of m6A RNA methylation peaks increased, and we identified 1144 m6A modification peaks and 1094 differentially expressed genes. The integration of m6A methylation and transcriptomic results enabled us to identify 16 candidate genes whose transcripts were differentially methylated and differentially expressed under lead stress. Annotation results suggest that these genes may promote abiotic stress tolerance by impacting lead uptake, transport, and accumulation through ROS pathways, enzymes, transporters, and hormones. These results provide candidate genes for future studies of lead stress tolerance mechanisms in soybean roots and provide genetic resources for studying plant heavy metal stress in soybean breeding.
Assuntos
Glycine max , Chumbo , Regiões 3' não Traduzidas , Transporte Biológico , Glycine max/genética , Chumbo/toxicidadeRESUMO
As a toxic anthropogenic pollutant, lead (Pb) can be harmful to both plants and animals. Here, the effects of the application of nitric oxide (NO) donor, sodium nitroprusside (SNP, 0, 50, and 100 µM), on the morphological, biochemical, and molecular responses of rice plants under Pb (0, 150, and 300 µM) toxicity in hydroponic conditions were investigated. Pb stress decreased biomass, photosynthetic pigments, Fv/Fm value, and nitrogen (N) and increased the accumulation of hydrogen peroxide (H2O2), methylglyoxal (MG), malondialdehyde (MDA), and electrolyte leakage (EL) in rice seedlings. However, by improving the metabolism of chlorophyll and proline, SNP increased the content of chlorophyll and proline, restored the performance of the photosynthetic apparatus, and stimulated the growth of Pb-stressed rice seedlings. SNP by reducing the expression of HMA2 and increasing the expression of HMA3 and HMA4 caused the immobilization of Pb in the roots and reduced its transfer to the leaves. Adding SNP increased the activity of antioxidant enzymes and glyoxalase cycle and decreased H2O2, MG, MDA, and EL in the leaves of Pb-stressed rice seedlings. By upregulating the expression of genes GSH1, PCS, and ABCC1, SNP increased the accumulation of GSH and PCs in the roots and leaves and increased the plant's tolerance to Pb stress. By modulating the activity of enzymes involved in N metabolism, SNP increased the concentration of N and nitrate and decreased the concentration of ammonium in the leaves of Pb-stressed seedlings. Our study provides evidence that NO may become a promising tool for increasing the tolerance of rice plants to Pb toxicity.
Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Nitroprussiato/metabolismo , Nitroprussiato/farmacologia , Oryza/metabolismo , Chumbo/metabolismo , Peróxido de Hidrogênio/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Estresse Oxidativo , Plântula , Clorofila/metabolismo , Prolina/metabolismoRESUMO
The most prevalent heavy metal pollutant in the environment is lead (Pb). Lead potentially contribute 10% of overall heavy metal contamination. Lead uptake by plants has been found to have an impact on their metabolic functions, photosynthetic activity, growth, and productivity. The current experiment was conducted to investigate the impact of triacontanol (Tria) for attenuating Pb stress in Brassica oleracea var. italic (broccoli). Three different Tria concentrations (10, 20 and 30 µmol L-1) were used to prime broccoli seeds. Growth of broccoli was reduced when exposed to Pb-driven toxicity. Additionally, Pb had a deleterious impact on the protein quantity, stomatal conductance, transpiration and photosynthetic rate. Nevertheless, plants grown from seeds primed with Tria2 (20 µmol L-1 Tria) exhibited improved morphological characteristics, uptake of mineral content (Mn+2, Zn+2, K+1, Na+1) along with biomass production. There was 1.6-fold increase in photosynthetic rate, the phenol (1.3 folds), and DPPH activity (1.2 folds) in seed primed with Tria2. Additionally, plants treated with Tria2 demonstrated enhanced MTI and gas exchange characteristics that improves plant stress tolerance under Pb stress. Seed priming with Tria can be used to increase plant tolerance to Pb stress as evidenced by the improved growth and biochemical characteristics of broccoli seedlings.
A number of studies emphasize the beneficial effects of plant growth regulators on the growth and yield of agricultural crops. The priming of seeds with triacontanol in vegetable crops, however, is a concern about which we know remarkably little. In addition, the effects of triacontanol on Brassica oleracea L var. italica under lead stress on growth, biomass, and nutrient content are largely unknown. Thus, the objective of this study was to evaluate the effects of seed priming with triacontanol on the agronomic traits, physiochemical traits, and nutrient content of Brassica oleracea L. var. italica under lead stress.
Assuntos
Brassica , Metais Pesados , Chumbo/toxicidade , Chumbo/metabolismo , Biodegradação Ambiental , Brassica/metabolismoRESUMO
Mangrove plants play an important role in the remediation of heavy-metal-contaminated estuarine and coastal areas; Barringtonia racemosa is a typical semi-mangrove plant. However, the effect of heavy metal stress on this plant has not been explored. In this study, tolerance characteristics and the accumulation profile of cadmium (Cd) and lead (Pb) in B. racemosa were evaluated. The results indicated that B. racemosa exhibited a high tolerance in single Cd/Pb and Cd + Pb stress, with a significant increase in biomass yield in all treatment groups, a significant increase in plant height, leaf area, chlorophyll and carotenoid content in most treatment groups and without significant reduction of SOD, POD, MDA, proline content, Chl a, Chl b, Chl a + b, Car, ratio of Chl a:b and ratio of Car:Chl (a + b). Cd and Pb mainly accumulated in the root (≥93.43%) and the content of Cd and Pb in B. racemosa was root > stem > leaf. Pb showed antagonistic effects on the Cd accumulation in the roots and Cd showed antagonistic or synergistic effects on the Pb accumulation in the roots, which depended on the concentration of Cd and Pb. There was a significant synergistic effect of Cd and Pb enrichment under a low Cd and Pb concentration treatment. Thus, phytoremediation could potentially use B. racemosa for Cd and Pb.
Assuntos
Barringtonia , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Carotenoides , Clorofila , Chumbo , Raízes de Plantas/química , Prolina , Solo , Poluentes do Solo/análise , Superóxido DismutaseRESUMO
To explore the effects of iminodisuccinic acid (a chelating agent) on maize (Zea mays L.) seed germination under lead (Pb) stress, we comparatively analyzed the effects of applying different concentrations of iminodisuccinic acid (0, 5, 20, and 100 mmol·dm-3) and combined an addition of exogenous substances regulating reactive oxygen species production on maize seed germination, seedling growth, H2O2 content, NADPH oxidase activity, and antioxidant enzyme activities under Pb-stressed and Pb-free conditions. Iminodisuccinic acid (100 mmol·dm-3) significantly delayed seed germination under normal germination conditions and alleviated the inhibitory effects of Pb stress (20 mmol·dm-3) on seed germination. Under normal conditions (without Pb stress), the iminodisuccinic acid-induced inhibition of seed germination was enhanced by treatment with dimethylthiourea (a specific scavenger of reactive oxygen species) or diphenyleneiodonium chloride (a specific inhibitor of NADPH oxidase), but diminished by treatment with H2O2, CaCl2, diethyldithiocarbamic acid (a specific inhibitor of superoxide dismutase), or aminotriazole (a specific inhibitor of catalase). Under Pb stress, iminodisuccinic acid partially eliminated the excessive H2O2 accumulation, improved superoxide dismutase and catalase activity, and weakened the high NADPH oxidase activity. In addition, Ca2+ chelation may be essential for maintaining the reactive oxygen species' balance and improving seed germination and seedling growth by iminodisuccinic acid supplementation in maize under Pb stress. The proposed iminodisuccinic acid supplementation-based method improved maize seed germination in Pb-polluted soil.
RESUMO
Sasa argenteostriata (Regel) E.G. Camus is a gramineous plant with the potential for phytoremediation. In this study, we aimed to determine its tolerance to zinc stress and combined lead-zinc stress and the effect of zinc on its absorption and accumulation characteristics of lead. The results showed that S. argenteostriata had good tolerance to zinc stress, and S. argenteostriata was not significantly damaged when the zinc stress concentration was 600 mg/L. Under both zinc stress and combined lead-zinc stress, the root was the main organ that accumulated heavy metals in S. argenteostriata. The presence of zinc promoted the absorption of lead by the root of S. argenteostriata, and the lead content in the root under PZ1, PZ2, PZ3 and PZ4 treatments was 2.15, 4.31, 4.47 and 6.01 times that of PZ0 on the 20 days. In the combined lead-zinc stress treatments, the toxicity of heavy metals to S. argenteostriata was mainly caused by lead. Under high concentrations of combined lead-zinc stress (PZ4), the proportion of zinc in the leaf of S. argenteostriata on the 20 days increased, which was used as a tolerance strategy to alleviate the toxicity of lead.
RESUMO
Tomato (Solanum lycopersicum L.) is cultivated and consumed worldwide, including in Indonesia. It is used in the food, cosmetic, and pharmaceutical industries, due to its high content of carotenoid (lycopene) compounds that have antioxidant and anticancer activities. In Indonesia, although several cultivars of tomato are cultivated, including Opal, Permata, Mutiara, and Rewako, studies on their genetic information are limited. Unpredicted climate change as well as heavy metal contamination, especially Pb pollution, has threatened Indonesian food security. Therefore, our study aimed to analyze the genetic diversity of the four local tomatoes using random amplified polymorphic DNA (RAPD) markers and to determine the growth responses of several local tomato genotypes under Pb stress. In this study, morphological responses to Pb, including plant height and root length were observed. The RAPD analysis showed that Rewako and Permata were distinct, whereas Opal and Mutiara were closely related, possessing 81.8% similarity. Pb stress influenced plant height and root length in the four tomato genotypes, with each genotype exhibiting different morphological responses than others. However, the closely related Mutiara and Opal genotypes demonstrated similar responses to Pb stress to Permata and Rewako. Our study demonstrates that RAPD are sensitive and efficient for elucidating the genomic profile of the tomato genotypes. In addition, our results suggest that genetic variation among tomato genotypes might influence the morphological responses against Pb stress.