Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
ACS Nano ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215393

RESUMO

Optical anisotropy is a fundamental attribute of some crystalline materials and is quantified via birefringence. A birefringent crystal gives rise to not only asymmetrical light propagation but also attenuation along two distinct polarizations, a phenomenon called linear dichroism (LD). Two-dimensional (2D) layered materials with high in-plane and out-of-plane anisotropy have garnered interest in this regard. Mithrene, a 2D metal-organic chalcogenate (MOCHA) compound, exhibits strong excitonic resonances due to its naturally occurring multiquantum well (MQW) structure and in-plane anisotropic response in the blue wavelength (∼400-500 nm) regime. The MQW structure and the large refractive indices of mithrene allow the hybridization of the excitons with photons to form self-hybridized exciton-polaritons in mithrene crystals with appropriate thicknesses. Here, we report the giant birefringence (∼1.01) and the tunable in-plane anisotropic response of mithrene, which stem from its low symmetry crystal structure and strong excitonic properties. We show that the LD in mithrene can be tuned by leveraging the anisotropic exciton-polariton formation via the cavity coupling effect, exhibiting giant in-plane LD (∼77.1%) at room temperature. Our results indicate that mithrene is a polaritonic birefringent material for polarization-sensitive nanophotonic applications in the short wavelength regime.

2.
Photosynth Res ; 161(1-2): 127-140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38662326

RESUMO

It has been thoroughly documented, by using 31P-NMR spectroscopy, that plant thylakoid membranes (TMs), in addition to the bilayer (or lamellar, L) phase, contain at least two isotropic (I) lipid phases and an inverted hexagonal (HII) phase. However, our knowledge concerning the structural and functional roles of the non-bilayer phases is still rudimentary. The objective of the present study is to elucidate the origin of I phases which have been hypothesized to arise, in part, from the fusion of TMs (Garab et al. 2022 Progr Lipid Res 101,163). We take advantage of the selectivity of wheat germ lipase (WGL) in eliminating the I phases of TMs (Dlouhý et al. 2022 Cells 11: 2681), and the tendency of the so-called BBY particles, stacked photosystem II (PSII) enriched membrane pairs of 300-500 nm in diameter, to form large laterally fused sheets (Dunahay et al. 1984 BBA 764: 179). Our 31P-NMR spectroscopy data show that BBY membranes contain L and I phases. Similar to TMs, WGL selectively eliminated the I phases, which at the same time exerted no effect on the molecular organization and functional activity of PSII membranes. As revealed by sucrose-density centrifugation, magnetic linear dichroism spectroscopy and scanning electron microscopy, WGL disassembled the large laterally fused sheets. These data provide direct experimental evidence on the involvement of I phase(s) in the fusion of stacked PSII membrane pairs, and strongly suggest the role of non-bilayer lipids in the self-assembly of the TM system.


Assuntos
Complexo de Proteína do Fotossistema II , Tilacoides , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Espectroscopia de Ressonância Magnética , Lipídeos/química , Fusão de Membrana/fisiologia
3.
Chirality ; 36(4): e23667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607651

RESUMO

Fluorescence-detected linear dichroism (FD-LD) enables one to collect linear dichroism spectra for oriented fluorophores in the presence of other absorbing species and light scattering. The experiment proceeds by scanning the excitation wavelength and using a filter to collect only emitted photons from the fluorophore. Thus, it has the potential to give data with enhanced selectivity and quality. By using a synchrotron radiation light source and fluorescence-detection, we show data for a range of fluorophores in different orienting environments. Film and flow-oriented FD-LD spectra were collected down to 170 nm. Even for flow-oriented liposomes, we have data collected down to 210 nm. For strongly scattering samples, for example, liposomes, FD-LD has the clear advantage that scattering is absent for the longer wavelength fluorescence photons. The collimated and smaller beam size of the synchrotron radiation also gives rise to sharper and more well-defined features in the spectra.

4.
Chirality ; 36(4): e23664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561319

RESUMO

Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.


Assuntos
DNA , Rad51 Recombinase , Rad51 Recombinase/química , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Estereoisomerismo , DNA/química , DNA de Cadeia Simples
5.
Acta Histochem ; 126(3): 152154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479076

RESUMO

Sulfonated azo dyes are crucial for the histochemical, topochemical, and electrophoretic demonstration of proteins. Additionally, these dyes may reveal the significance of evaluating the anisotropic phenomenon of linear dichroism in macromolecularly oriented stained proteins. However, this requires that the ordered -NH3+ groups available for electrostatic binding of the -SO3- dye groups are present in the protein substrate. Further, the reactive -SO3- dye groups should be positioned in a way to permit selective absorption of polarized light at the level of the dye -NN- chromophore azo groups. This review reports the usefulness of sulfonated azo dyes in revealing the extrinsic phenomenon of linear dichroism in dye-substrate complexes and changes in the oriented state of protein macromolecules.

6.
Methods Mol Biol ; 2741: 399-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217665

RESUMO

Useful structural information about the conformation of nucleic acids can be quickly acquired by circular and linear dichroism (CD/LD) spectroscopy. These techniques, rely on the differential absorption of polarised light and are indeed extremely sensitive to subtle changes in the structure of chiral biomolecules. Many CD analyses of DNA or DNA:protein complexes have been conducted with substantial data acquisitions. Conversely, CD RNA analysis are still scarce, despite the fact that RNA plays a wide cellular function. This chapter seeks to introduce the reader to the use of circular, linear dichroism and in particular the use of Synchrotron Radiation for such samples. The use of these techniques on small noncoding RNA (sRNA) will be exemplified by analyzing changes in base stacking and/or helical parameters for the understanding of sRNA structure and function, especially by translating the dynamics of RNA:RNA annealing but also to access RNA stability or RNA:RNA alignment. The effect of RNA remodeling proteins will also be addressed. These analyses are especially useful to decipher the mechanisms by which sRNA will adopt the proper conformation thanks to the action of proteins such as Hfq or ProQ in the regulation of the expression of their target mRNAs.


Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , DNA , Dicroísmo Circular , Fator Proteico 1 do Hospedeiro
7.
Artigo em Inglês | MEDLINE | ID: mdl-37910813

RESUMO

Controlling the in-plane magnetocrystalline anisotropy and interfacial exchange coupling between ferromagnetic (FM) layers plays a key role in next-generation spintronic and magnetic memory devices. In this work, we explored the effect of tuning the magnetocrystalline anisotropy of La2/3Sr1/3CoO3 (LSCO) and La2/3Sr1/3MnO3 (LSMO) layers and the corresponding effect on interfacial exchange coupling by adjusting the thickness of the LSCO layer (tLSCO). The epitaxial LSCO/LSMO bilayers were grown on (110)o-oriented NdGaO3 (NGO) substrates with a fixed LSMO (top layer) thickness of 6 nm and LSCO (bottom layer) thicknesses varying from 1 to 10 nm. Despite the small difference (∼0.2%) in lattice mismatch between the two in-plane directions, [001]o and [11̅0]o, a pronounced in-plane magnetic anisotropy was observed. Soft X-ray magnetic circular dichroism hysteresis loops revealed that for tLSCO ≤ 4 nm, the easy axes for both LSCO and LSMO layers were along the [001]o direction, and the LSCO layer was characterized by magnetically active Co2+ ions that strongly coupled to the LSMO layer. No exchange bias effect was observed in the hysteresis loops. In contrast, along the [11̅0]o direction, the LSCO and LSMO layers displayed a small difference in their coercivity values, and a small exchange bias shift was observed. As tLSCO increased above 4 nm, the easy axis for the LSCO layer remained along the [100]o direction, but it gradually rotated to the [11̅0]o direction for the LSMO layer, resulting in a large negative exchange bias shift. Therefore, we provide a way to control the magnetocrystalline anisotropy and exchange bias by tuning the interfacial exchange coupling between the two FM layers.

8.
Biophys Rev ; 15(5): 1053-1078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37974981

RESUMO

Under different conditions, the DNA double helix can take different geometric forms. Of the large number of its conformations, in addition to the "canonical" B form, the A, C, and Z forms are widely known, and the D, Hoogsteen, and X forms are less known. DNA locally takes the A, C, and Z forms in the cell, in complexes with proteins. We compare different methods for detecting non-canonical DNA conformations: X-ray, IR, and Raman spectroscopy, linear and circular dichroism in both the infrared and ultraviolet regions, as well as NMR (measurement of chemical shifts and their anisotropy, scalar and residual dipolar couplings and inter-proton distances from NOESY (nuclear Overhauser effect spectroscopy) data). We discuss the difficulties in applying these methods, the problems of theoretical interpretation of the experimental results, and the prospects for reliable identification of non-canonical DNA conformations.

9.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003280

RESUMO

Linear dichroism (LD) is a differential polarized light absorption spectroscopy used for studying filamentous molecules such as DNA and protein filaments. In this study, we review the applications of LD for the analysis of DNA-protein interactions. LD signals can be measured in a solution by aligning the sample using flow-induced shear force or a strong electric field. The signal generated is related to the local orientation of chromophores, such as DNA bases, relative to the filament axis. LD can thus assess the tilt and roll of DNA bases and distinguish intercalating from groove-binding ligands. The intensity of the LD signal depends upon the degree of macroscopic orientation. Therefore, DNA shortening and bending can be detected by a decrease in LD signal intensity. As examples of LD applications, we present a kinetic study of DNA digestion by restriction enzymes and structural analyses of homologous recombination intermediates, i.e., RecA and Rad51 recombinase complexes with single-stranded DNA. LD shows that the DNA bases in these complexes are preferentially oriented perpendicular to the filament axis only in the presence of activators, suggesting the importance of organized base orientation for the reaction. LD measurements detect DNA bending by the CRP transcription activator protein, as well as by the UvrB DNA repair protein. LD can thus provide information about the structures of protein-DNA complexes under various conditions and in real time.


Assuntos
DNA , Recombinases Rec A , Recombinases Rec A/metabolismo , DNA/química , DNA de Cadeia Simples , Análise Espectral/métodos , Rad51 Recombinase/metabolismo
10.
Chirality ; 35(11): 826-837, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37418251

RESUMO

Protein-membrane interactions play an important role in various biological phenomena, such as material transport, demyelinating diseases, and antimicrobial activity. We combined vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy with theoretical (e.g., molecular dynamics and neural networks) and polarization experimental (e.g., linear dichroism and fluorescence anisotropy) methods to characterize the membrane interaction mechanisms of three soluble proteins (or peptides). α1 -Acid glycoprotein has the drug-binding ability, but the combination of VUVCD and neural-network method revealed that the membrane interaction causes the extension of helix in the N-terminal region, which reduces the binding ability. Myelin basic protein (MBP) is an essential component of the myelin sheath with a multi-layered structure. Molecular dynamics simulations using a VUVCD-guided system showed that MBP forms two amphiphilic and three non-amphiphilic helices as membrane interaction sites. These multivalent interactions may allow MBP to interact with two opposing membrane leaflets, contributing to the formation of a multi-layered myelin structure. The antimicrobial peptide magainin 2 interacts with the bacterial membrane, causing damage to its structure. VUVCD analysis revealed that the M2 peptides assemble in the membrane and turn into oligomers with a ß-strand structure. Linear dichroism and fluorescence anisotropy suggested that the oligomers are inserted into the hydrophobic core of the membrane, disrupting the bacterial membrane. Overall, our findings demonstrate that VUVCD and its combination with theoretical and polarization experimental methods pave the way for unraveling the molecular mechanisms of biological phenomena related to protein-membrane interactions.

11.
Chirality ; 35(11): 846-855, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37331723

RESUMO

Chiral materials with strong linear anisotropies are difficult to accurately characterize with circular dichroism (CD) because of artifactual contributions to their spectra from linear dichroism (LD) and birefringence (LB). Historically, researchers have used a second-order Taylor series expansion on the Mueller matrix to model the LDLB interaction effects on the spectra in conventional materials, but this approach may no longer be sufficient to account for the artifactual CD signals in emergent materials. In this work, we present an expression to model the measured CD using a third-order expansion, which introduces "pairwise interference" terms that, unlike the LDLB terms, cannot be averaged out of the signal. We find that the third-order pairwise interference terms can make noticeable contributions to the simulated CD spectra. Using numerical simulations of the measured CD across a broad range of linear and chiral anisotropy parameters, the LDLB interactions are most prominent in samples that have strong linear anisotropies (LD, LB) but negligible chiral anisotropies, where the measured CD strays from the chirality-induced CD by factors greater than 103 . Additionally, the pairwise interactions are most significant in systems with moderate-to-strong chiral and linear anisotropies, where the measured CD is inflated twofold, a figure that grows as linear anisotropies approach their maximum. In summary, media with moderate-to-strong linear anisotropy are in great danger of having their CD altered by these effects in subtle manners. This work highlights the significance of considering distortions in CD measurements through higher-order pairwise interference effects in highly anisotropic nanomaterials.

12.
Small ; 19(19): e2206932, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807515

RESUMO

Optical anisotropy, which is quantified by birefringence (Δn) and linear dichroism (Δk), can significantly modulate the angle-resolved polarized Raman spectroscopy (ARPRS) response of anisotropic layered materials (ALMs) by external interference. This work studies the separate modulation of birefringence on the ARPRS response and the intrinsic response by selecting transparent birefringent crystal α-MoO3 as an excellent platform. It is found that there are several anomalous ARPRS responses in α-MoO3 that cannot be reproduced by the real Raman tensor widely used in non-absorbing materials; however, they can be well explained by considering the birefringence-induced Raman selection rules. Moreover, the systematic thickness-dependent study indicates that birefringence modulates the ARPRS response to render an interference pattern; however, the amplitude of modulation is considerably lower than that by linear dichroism as occurred in black phosphorous. This weak modulation brings convenience to the crystal orientation determination of transparent ALMs. Combining the atomic vibrational pattern and bond polarizability model, the intrinsic ARPRS response of α-MoO3 is analyzed, giving the physical origins of the Raman anisotropy. This study employs α-MoO3 as an example, although it is generally applicable to all transparent birefringent ALMs.

13.
Angew Chem Int Ed Engl ; 62(11): e202217977, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647773

RESUMO

The molecular crystals that manifest unusual mechanical properties have attracted growing attention. Herein, we prepared an organic single crystal that shows bidirectional superelastic transformation in response to shear stress. Single-crystal X-ray diffractions revealed this crystal-twinning related shape change is owed to a stress-controlled 90° rotation of 4,4'-bipyridine around the hydrogen bonds of a chiral organic trimer. As a consequence of the 90° shift in the aromatic plane, an interconversion of crystallographic a-, b-axes (a→b' and b→a') was detected. The molecular rotations changed the anisotropic absorption of linearly polarized light. Therefore, a stress-induced inversion of linear dichroism spectra was demonstrated for the first time. This study reveals the superior mechanical flexibilities of single crystals can be realized by harnessing the molecular rotations and this superelastic crystal may find applications in optical switching and communications.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122019, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308827

RESUMO

The UV absorbance bands of 1,4-distyrylbenzene (1,4-Bis[(E)-2-phenylethenyl]benzene, DSB) are investigated by Synchrotron Radiation Linear Dichroism (SRLD) spectroscopy using stretched polyethylene as an anisotropic solvent. The observed polarization data provide information on the transition moment directions of the observed spectral features. The investigation covers the range 15,000-58,000 cm-1 (667-172 nm), thereby providing new information on the transitions of DSB in the vacuum UV region. The observed spectrum is characterized by four main band systems centered at 27,600, 41,000, 49,800, and 57,500 cm-1 (362, 244, 201, and 174 nm). In general, the observed bands and their polarization directions are well predicted by the results of quantum chemical calculations using Time-Dependent Density Functional Theory (TD-DFT) with the functional CAM-B3LYP, and with the semiempirical all-valence-electrons method LCOAO.

15.
Nano Lett ; 22(18): 7499-7505, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094390

RESUMO

The transition dipole orientations of dye assemblies in heterostructures have a crucial impact on the efficiency of novel optoelectronic devices such as organic thin-film transistors and light-emitting diodes. These devices are frequently based on heterojunctions and tandem structures featuring multiple optical transitions. Precise knowledge of preferred orientations, spatial order, and spatial variations is highly relevant. We present a fast and universal large-area screening method to determine the transition dipole orientations in dye assemblies with diffraction-limited spatial resolution. Moreover, our hyperspectral imaging approach disentangles the orientations of different chromophores. As a demonstration, we apply our technique to dye monolayers with two optical transitions sandwiched between two ultrathin silicate nanosheets. A comprehensive model for dipole orientation distributions in monolayers reveals a long-range orientational order and a strong correlation between the two transitions.

16.
ACS Nano ; 16(8): 12852-12865, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914000

RESUMO

A selective-area oxidation strategy is developed to polarize high-symmetry 2D layered materials (2DLMs). The dichroic ratio of the derived O-WS2/WS2 photodetector reaches ∼8, which is competitive among state-of-the-art polarization photodetectors. Finite-different time-domain simulations consolidate that the polarization-sensitive photoresponse is associated with anisotropic spacial confinement, which gives rise to distinct dielectric contrasts for linearly polarized light of various directions and thus the polarization-dependent near-field distribution. Furthermore, selective-area oxidation treatment brings about dual effects, comprising the in situ formation of seamless in-plane WS2 homojunctions by thickness tailoring and the formation of out-of-plane O-WS2/WS2 heterojunctions. As a consequence, the recombination of photocarriers is markedly suppressed, resulting in outstanding photosensitivity with the optimized responsivity, external quantum efficiency, and detectivity of 0.161 A/W, 49.4%, and 1.4 × 1011 Jones for an O-WS2/WS2 photodetector in a self-powered mode. A scheme of multiplexing optical communications is revealed by harnessing the intensity and polarization state of light as independent transmission channels. Furthermore, dynamic encryption by leveraging the polarization state as a secret key is proposed. In the end, broad universality is reinforced through the induction of linear dichroism within 2D WSe2 crystals. On the whole, this study provides an additional perspective on polarization optoelectronics based on 2DLMs.

17.
J Phys Condens Matter ; 34(42)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35940170

RESUMO

Using momentum microscopy with sub-µm spatial resolution, allowing momentum resolved photoemission on individual antiferromagnetic domains, we observe an asymmetry in the electronic band structure,E(k)≠E(-k), in Mn2Au. This broken band structure parity originates from the combined time and parity symmetry,PT, of the antiferromagnetic order of the Mn moments, in connection with spin-orbit coupling. The spin-orbit interaction couples the broken parity to the Néel order parameter direction. We demonstrate a novel tool to image the Néel vector direction,N, by combining spatially resolved momentum microscopy withab-initiocalculations that correlate the broken parity with the vectorN.

18.
J Phys Condens Matter ; 34(22)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276682

RESUMO

Black phosphorus is a material with an intrinsic anisotropy in electronic and optical properties due to its puckered honeycomb lattice. Optical absorption is different for incident light with linear polarization in the armchair and zigzag directions (linear dichroism). These directions are also used in the cuts of materials to create black phosphorus nanoribbons. Edges of nanoribbons usually have small reconstruction effects, with minor electronic effects. Here, we show a reconstruction of the armchair edge that introduces a new valence band, which flattens the puckered lattice and increases the linear dichroism extrinsically in the visible spectrum. This enhancement in linear dichroism is explained by the polarization selection rule, which considers the parity of the wave function to a reflection plane. The flattened-edge reconstruction originates from the inversion of chirality of the P atoms at the edges and significantly alters the entire optical absorption of the material. The flattened edges have potential applications in pseudospintronics, photodetectors and might provide new functionalities in optoelectronic and photonic devices.

19.
Membranes (Basel) ; 12(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35207051

RESUMO

The antimicrobial peptide magainin 2 (M2) interacts with and induces structural damage in bacterial cell membranes. Although extensive biophysical studies have revealed the interaction mechanism between M2 and membranes, the mechanism of membrane-mediated oligomerization of M2 is controversial. Here, we measured the synchrotron-radiation circular dichroism and linear dichroism (LD) spectra of M2 in dipalmitoyl-phosphatidylglycerol lipid membranes in lipid-to-peptide (L/P) molar ratios from 0-26 to characterize the conformation and orientation of M2 on the membrane. The results showed that M2 changed from random coil to α-helix structures via an intermediate state with increasing L/P ratio. Singular value decomposition analysis supported the presence of the intermediate state, and global fitting analysis revealed that M2 monomers with an α-helix structure assembled and transformed into M2 oligomers with a ß-strand-rich structure in the intermediate state. In addition, LD spectra showed the presence of ß-strand structures in the intermediate state, disclosing their orientations on the membrane surface. Furthermore, fluorescence spectroscopy showed that the formation of ß-strand oligomers destabilized the membrane structure and induced the leakage of calcein molecules entrapped in the membrane. These results suggest that the formation of ß-strand oligomers of M2 plays a crucial role in the disruption of the cell membrane.

20.
Adv Mater ; 34(22): e2105665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34622516

RESUMO

The ability to detect light in photodetectors is central to practical optoelectronic applications, which has been demonstrated in inorganic semiconductor devices. However, so far, the study of polarization-sensitive organic photodetectors, which have unique applications in flexible and wearable electronics, has not received much attention. Herein, the construction of polarization-sensitive photodetectors based on the single crystals of a superior optoelectronic organic semiconductor, 2,6-diphenyl anthracene (DPA), is demonstrated. The systematic characterization of two-dimensionally grown DPA crystals with various techniques definitely show their strong anisotropy in molecular vibration, optical reflectance and optical absorption. In terms of polarization sensitivity, DPA-crystal based photodetectors exhibit a linear dichroic ratio up to ≈1.9. Theoretical calculations confirm that intrinsic linear dichroism, originated from the anisotropic in-plane crystal structure, is responsible for the polarization sensitivity of DPA crystals. This work opens up a new door for exploiting organic semiconductors for developing highly compact polarization photodetectors and providing new functionalities in novel flexible optical and optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA