RESUMO
BACKGROUND: This study aimed to evaluate the efficacy and safety of pegylated liposomal doxorubicin (PLD) for patients with partially platinum-sensitive, platinum-resistant, or platinum-refractory ovarian cancer. METHODS: Patients with partially platinum-sensitive, platinum-resistant, or platinum-refractory ovarian cancer were recruited in this prospective, open-label, single-arm, multicenter study. Eligible patients were given 4-6 cycles of PLD (40 mg/m2 on day 1, every 4 weeks). The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), quality of life, and safety. Exploratory endpoints included the change trend of CA125 and platinum-free interval. RESULTS: Between June 2017 and November 2020, 167 eligible patients were included in the full analysis set. The median PFS and OS were 6.8 months (95% CI, 4.4-9.3 months) and 19.1 months (95% CI, 15.0-23.3 months), respectively. The ORR and DCR were 32.3% and 60.5%, respectively. The ORR (62.3 vs 22.5%) and DCR (84.9 vs 60.7%) of patients with a CA125 decrease after the first cycle were significantly higher than those without a CA125 decrease (all Pâ <â .05). Gradeâ ≥â 3 and serious adverse events were reported in 9.9% and 3.9% of patients, respectively. No treatment-related death was observed. CONCLUSION: PLD showed promising efficacy and manageable tolerability in patients with partially platinum-sensitive, platinum-resistant, or platinum-refractory ovarian cancer.ClinicalTrials.gov Identifier: Chinese Clinical Trial Registry, ChiCTR1900022962.
RESUMO
Advances in the field of oncology have led to the advent of doxorubicin (DOX), an anthracycline chemotherapeutic agent, through which cancer survival rates have remarkably improved. There has, however, been a rise in adverse effects from the use of DOX, most notably cardiotoxicity. DOX-induced cardiotoxicity is thought to arise through the generation of reactive oxygen species (ROS), causing mitochondrial dysfunction in the cardiomyocytes. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards and focused on cancer patients undergoing DOX therapy. The research question addressed interventions aimed at preventing DOX-induced cardiotoxicity. Google Scholar, PubMed, and ScienceDirect databases were used to conduct a systematic search. Next, screening was carried out by reviewing the title and abstract of various articles to exclude irrelevant studies, followed by the retrieval of full-text articles. Scale for the assessment of narrative review articles 2 (SANRA 2) for narrative reviews, a measurement tool to assess systematic reviews (AMSTAR) checklist for systematic reviews, and the Cochrane risk of bias tool for randomized controlled trials (RCTs) were the tools employed for quality assessment. This systematic review provides convincing evidence about preventive interventions to counteract DOX-induced cardiotoxicity. Primary prevention strategies against DOX-induced cardiotoxicity include pharmacological and non-pharmacological measures. Dexrazoxane reduces cardiotoxicity without therapeutic compromise. Beta-blockers showed mixed results in preserving cardiac function. The research on renin-angiotensin-aldosterone system (RAAS) inhibitors suggests that most of these agents can reduce the risk of DOX-induced cardiotoxicity. The liposomal formulation of DOX decreases cardiotoxicity without sacrificing effectiveness. Chemotherapy regimens should be supplemented with cardioprotective medications to increase therapeutic efficacy and lower cardiac risks. Exercise is an essential non-pharmacological strategy for decreasing DOX-induced cardiotoxicity. It acts by lowering oxidative stress, maintaining mitochondrial function, and averting apoptosis. Other non-pharmacological interventions through antioxidative, anti-apoptotic, and mitochondrial protective mechanisms, such as resveratrol, vitamin E, curcumin, and visnagin, show promise in lowering DOX-induced cardiotoxicity and may be useful as supplementary therapy during cancer treatment. In conclusion, this review highlights the need for a multimodal strategy that incorporates different tactics, as well as the need for additional research and strong clinical trials, with the ultimate goal of protecting cardiac health in patients receiving chemotherapy with DOX.
RESUMO
Background: Pegylated liposomal doxorubicin (PLD), epirubicin and pirarubicin are the main anthracyclines widely used in China. PLD demonstrates therapeutic response comparable to epirubicin and pirarubicin in neoadjuvant chemotherapy (NAC) of breast cancer. Objectives: The objectives of our study were to retrospectively assess the real-world effectiveness and prognostic characteristics of PLD as NAC for HR ⩽ 10%/human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Design: This was a retrospective study. Methods: Our study enrolled patients with HR ⩽ 10%/HER2-negative breast cancer who received PLD-, epirubicin- or pirarubicin-based NAC from three centres in Hunan Province, China, between 2015 and 2022. We employed inverse probability of treatment weighting to balance the differences in patients' characteristics among the PLD, epirubicin, and pirarubicin groups. The endpoints were pathological complete response (pCR), event-free survival (EFS), and overall survival (OS). Results: A total of 267 patients were included. After NAC, the pCR rates in PLD group were superior to epirubicin group (PLD, 34.1%; epirubicin, 20.8%, p = 0.038). The differences in EFS (log-rank p = 0.99) and OS (log-rank p = 0.33) among the three groups were not statistically significant. Among the three groups, non-pCR patients had worse EFS than pCR patients (log-rank p = 0.014). For patients with pCR, the differences in EFS (log-rank p = 0.47) and OS (log-rank p = 0.38) were not statistically significant among the three groups, and the EFS (log-rank p = 0.59) and OS (log-rank p = 0.14) of non-pCR patients in the PLD group were similar to those in the epirubicin and pirarubicin groups. Conclusion: PLD had a similar therapeutic response and prognosis compared to epirubicin or pirarubicin in NAC for patients with HR ⩽ 10%/HER2 negative breast cancer, which means that PLD represents a potential NAC option.
RESUMO
PEGylated liposomal doxorubicin (PLD) has effectively reduced the cardiac toxicity of free doxorubicin (DOX) due to its unique nanoscale properties. However, an unexpected accumulation of PLD in the skin has led to hand-foot syndrome (HFS), negatively impacting quality of life and psychological well-being. In this study, self-limiting HFS rat models were created to mimic human symptoms through varying dosing schedules and intensities of PLD. The effects of PLD formulation parameters on HFS were also investigated. The results demonstrated that replacing ammonium sulfate with citric buffer, increasing liposome size, or reducing DSPE-mPEG2000 modification density alleviated HFS. Additionally, liposomes without DSPE-mPEG2000 modification completely avoided HFS, suggesting that PEGylated phospholipid was the key formulation parameter contributing to PLD-induced HFS. Furthermore, the correlation between liposome pharmacokinetics and HFS indicated that PEGylation, rather than the extended circulation time of liposomes, may mediated PLD-related HFS. Better understanding of the formulation parameters that trigger HFS can guide reformulation strategies to mitigate or prevent this syndrome.
Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Síndrome Mão-Pé , Lipossomos , Polietilenoglicóis , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/administração & dosagem , Animais , Síndrome Mão-Pé/etiologia , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/efeitos adversos , Masculino , Ratos Sprague-Dawley , Ratos , Fosfatidiletanolaminas/química , Modelos Animais de DoençasRESUMO
Kaposi sarcoma is a neoplasm caused by human herpes virus 8 (HHV-8) that commonly presents as subcutaneous lesions but can also involve visceral organs such as the gastrointestinal and pulmonary systems. Diagnosis is achieved through histopathological analysis of cutaneous lesions or lymph nodes. In this study, we report two patients, recently diagnosed with HIV, who were later found to have cutaneous and visceral (pleural) Kaposi sarcoma. In both cases, the patients presented with dyspnea accompanied by cutaneous lesions and bilateral pleural effusion. Unfortunately, the first patient did not survive long enough for treatment initiation. The second patient, however, demonstrated a favorable response to a treatment regimen comprising highly active antiretroviral therapy (HAART) and liposomal doxorubicin.
RESUMO
Binding of anti-PEG antibodies to poly(ethylene glycol) (PEG) on the surface of PEGylated liposomal doxorubicin (PLD) in vitro and in rats can activate complement and cause the rapid release of doxorubicin from the liposome interior. Here, we find that irinotecan liposomes (IL) and L-PLD, which have 16-fold lower levels of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG2000 in their liposome membrane as compared to PLD, generate less complement activation but remain sensitive to destabilization and drug release by anti-PEG antibodies. Complement activation and liposome destabilization correlated with the theoretically estimated number of antibody molecules bound per liposome. Drug release from liposomes proceeded through the alternative complement pathway but was accelerated by the classical complement pathway. In contrast to PLD destabilization by anti-PEG immunoglobulin G (IgG), which proceeded by the insertion of membrane attack complexes in the lipid bilayer of otherwise intact PLD, anti-PEG IgG promoted the fusion of L-PLD, and IL to form unilamellar and oligo-vesicular liposomes. Anti-PEG immunoglobulin M (IgM) induced drug release from all liposomes (PLD, L-PLD, and IL) via the formation of unilamellar and oligo-vesicular liposomes. Anti-PEG IgG destabilized both PLD and L-PLD in rats, indicating that the reduction of PEG levels on liposomes is not an effective approach to prevent liposome destabilization by anti-PEG antibodies.
Assuntos
Doxorrubicina , Lipossomos , Polietilenoglicóis , Polietilenoglicóis/química , Lipossomos/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Animais , Ratos , Anticorpos/química , Anticorpos/imunologia , Ativação do Complemento/efeitos dos fármacos , Fosfatidiletanolaminas/química , Liberação Controlada de FármacosRESUMO
The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.
RESUMO
Epithelioid hemangioendothelioma is a rare vascular malignancy, and currently, there is no standard treatment regimen for this disease and existing treatment options have limited efficacy. In this case report, we present a patient with lung and lymph node metastases from prostate epithelioid hemangioendothelioma who achieved a significant partial response. This was accomplished through alternating nivolumab therapy with ipilimumab and liposomal doxorubicin, resulting in a progression-free-survival more than 6 months to date. The treatment was well-tolerated throughout. Our report suggests that dual immunotherapy alternating with anti-PD-1antibody plus doxorubicin may be a potential treatment modality for epithelioid hemangioendothelioma. However, larger sample studies are necessary to ascertain the effectiveness of this treatment strategy and it is essential to continue monitoring this patient to sustain progression-free survival and overall survival.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Doxorrubicina , Hemangioendotelioma Epitelioide , Nivolumabe , Receptor de Morte Celular Programada 1 , Neoplasias da Próstata , Humanos , Masculino , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Hemangioendotelioma Epitelioide/tratamento farmacológico , Hemangioendotelioma Epitelioide/terapia , Nivolumabe/administração & dosagem , Nivolumabe/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Ipilimumab/administração & dosagem , Ipilimumab/uso terapêutico , Resultado do Tratamento , Polietilenoglicóis/administração & dosagem , Pessoa de Meia-IdadeRESUMO
Background: The combined vincristine, pegylated liposomal doxorubicin (PLD), and cyclophosphamide (VPC) regimen has never been studied in pediatric patients. Methods: This open-label, single-center, single-arm phase I study utilizing a "3 + 3" design enrolled children with relapsed/refractory (R/R) solid tumors. Three dose levels of PLD (Duomeisu®) were studied (30, 40, or 50 mg/m2) in combination with cyclophosphamide (1500 mg/m2), mesna (1500 mg/m2), and vincristine (1.5 mg/m2, maximum 2 mg) once every 3 weeks. The primary endpoints included safety, the maximum tolerated dose (MTD) of PLD (Duomeisu®), and the recommended phase 2 dose (RP2D) of PLD (Duomeisu®) for further phase 2 investigation. The secondary endpoints were objective response rate (ORR) and disease control rate (DCR). This study is registered with ClinicalTrials.gov, NCT04213612. Findings: Between January 7, 2020, and November 18, 2021, 34 patients were eligible and evaluable for toxicity, while 26 patients were evaluable for response. The MTD of PLD (Duomeisu®) was 30 mg/m2. The most common adverse event (AE) was grade 3 or 4 neutropenia (61.8%). The most common grade 1 or 2 non-hematologic AE and cardiotoxicity effects were vomiting (35.3%) and abnormal electrocardiogram T waves (20.6%), respectively. ORR and DCR to VPC regimen after two cycles were 50.0% and 92.3%, respectively. Targeted gene panel sequencing revealed the activation of TP53 mutation may be an adverse prognostic factor. Interpretation: The VPC regimen showed a promising safety profile and had preliminary efficacy in children with R/R solid tumors. The RP2D for PLD (Duomeisu®) combined with cyclophosphamide and vincristine is 30 mg/m2 once every 3 weeks. Funding: CSPC Ouyi Pharmaceutical Co., Ltd., Shijiazhuang, the National Key Research and Development Program of China [No. 2022YFC2705005], the National Natural Science Foundation of China [No. 82203303], and the Basic and Applied Basic Research Foundation of Guangdong Province [No. 2021A1515110234].
RESUMO
INTRODUCTION: This multicenter, phase II randomized, non-inferiority study reports from the first prospective two-armed randomized control trial that compared the efficacy, safety, and quality of life (QoL) of pegylated liposomal doxorubicin (PLD)-based and epirubicin-based as adjuvant chemotherapy for stage I-II human epidermal growth factor receptor 2 (HER2)-negative breast cancer. METHODS: Patients with stage I/II HER2-negative breast cancer received PLD (37.5 mg/m2, Q3W, 5 cycles, LC arm) plus cyclophosphamide (600 mg/m2) or epirubicin (90 mg/m2, Q3W, 4 cycles, EC arm) plus cyclophosphamide (600 mg/m2). Randomization was stratified by lymph node and ER and PR status. The primary endpoint was disease-free survival (DFS), and secondary endpoints were overall survival (OS), safety profiles, and QoL. QoL was assessed using the EORTC-QLQ-C30 and QLQ-BR23 questionnaires. RESULTS: A total of 256 patients were assigned to LC (n = 148) and EC (n = 108). There was no difference in 5-year DFS and OS rate between the two groups. LC-based adjuvant regimens had significantly less alopecia and low-grade 3-4 hematologic adverse events (AEs). Significantly improved QoL was observed in the LC arm during and after treatment for symptoms including fatigue, nausea and vomiting, and systemic therapy side effects. CONCLUSION: Comparable efficacy and safety between adjuvant PLD and epirubicin for stage I-II HER2-negative breast cancer was observed. There was no difference in the 5-year DFS and OS rates between the two treatment arms. However, low-grade 3-4 AEs and a trend of favorable QoL symptom scales were observed in the LC arm, suggesting that PLD-containing regimen could become a new standard treatment for early-stage HER2-negative breast cancer patients.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Ciclofosfamida , Doxorrubicina , Epirubicina , Polietilenoglicóis , Qualidade de Vida , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Polietilenoglicóis/uso terapêutico , Polietilenoglicóis/administração & dosagem , Epirubicina/uso terapêutico , Epirubicina/administração & dosagem , Epirubicina/efeitos adversos , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Doxorrubicina/efeitos adversos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/uso terapêutico , Ciclofosfamida/efeitos adversos , Ciclofosfamida/administração & dosagem , Receptor ErbB-2/metabolismo , Adulto , Estudos Prospectivos , Idoso , Resultado do Tratamento , Estadiamento de Neoplasias , Quimioterapia AdjuvanteRESUMO
Liposomes are excellent drug delivery vehicles for chemotherapeutics as they may change the pharmacokinetics of therapeutic compounds, resulting in altered tissues distribution, and in some cases, reduced cytotoxicity and enhanced distribution and efficacy of the active pharmaceutical ingredient (API) at target tissues. Drug release profiles of liposomal formulations are crucial to support equivalence evaluation and quality control in pre- and post-approval stages. We developed an automated chromatographic method for quantifying the drug release profile of liposomal formulations containing doxorubicin to overcome the shortcomings of currently available methods. The newly developed method employs nanoparticle exclusion chromatography (nPEC), using a monolithic silica column coated with polyvinylpyrrolidone to separate the released drug from liposomal encapsulated drug. We evaluated the effects of pH, temperature, and ammonium formate concentration on the drug release rate. The optimized release buffer consisting of 5 % sucrose, 20 mM l-histidine, and 200 mM ammonium formate was selected for the drug release profiling of five liposomal formulations at 47 °C. The drug release profiles of five liposomal doxorubicin formulations were similar. Our automated method requires very small amounts of the sample and provides release profiles with high sensitivity and accuracy. In addition, this method can be applied to other liposomal products to allow for simple, fast, and accurate analysis of in vitro drug release profiling.
Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Polietilenoglicóis , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Polietilenoglicóis/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/análise , Concentração de Íons de Hidrogênio , Lipossomos , Nanopartículas/química , Temperatura , Química Farmacêutica/métodosRESUMO
BACKGROUND: Pegylated liposomal doxorubicin (PLD) is a liposome-encapsulated form of doxorubicin with equivalent efficacy and less cardiotoxicity. This phase 2 study evaluated the efficacy and safety of the PLD-containing CHOP regimen in newly diagnosed patients with aggressive peripheral T-cell lymphomas (PTCL). METHODS: Patients received PLD, cyclophosphamide, vincristine/vindesine, plus prednisone every 3 weeks for up to 6 cycles. The primary endpoint was the objective response rate at the end of treatment (EOT). RESULTS: From September 2015 to January 2017, 40 patients were treated. At the EOT, objective response was achieved by 82.5% of patients, with 62.5% complete response. As of the cutoff date (September 26, 2023), median progression-free survival (mPFS) and overall survival (mOS) were not reached (NR). The 2-year, 5-year, and 8-year PFS rates were 55.1%, 52.0%, and 52.0%. OS rate was 80.0% at 2 years, 62.5% at 5 years, and 54.3% at 8 years. Patients with progression of disease within 24 months (POD24) had worse prognosis than those without POD24, regarding mOS (41.2 months vs NR), 5-year OS (33.3% vs 94.4%), and 8-year OS (13.3% vs 94.4%). Common grade 3-4 adverse events were neutropenia (87.5%), leukopenia (80.0%), anemia (17.5%), and pneumonitis (17.5%). CONCLUSION: This combination had long-term benefits and manageable tolerability, particularly with less cardiotoxicity, for aggressive PTCL, which might provide a favorable benefit-risk balance. CLINICALTRIALS.GOV IDENTIFIER: Chinese Clinical Trial Registry, ChiCTR2100054588; IRB Approved: Ethics committee of Fudan University Shanghai Cancer Center (Date 2015.8.31/No. 1508151-13.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Doxorrubicina , Linfoma de Células T Periférico , Polietilenoglicóis , Prednisona , Vincristina , Humanos , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Masculino , Feminino , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/uso terapêutico , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Ciclofosfamida/efeitos adversos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Vincristina/uso terapêutico , Vincristina/efeitos adversos , Vincristina/administração & dosagem , Adulto , Idoso , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Prednisona/efeitos adversos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/mortalidade , Vindesina/administração & dosagem , Vindesina/uso terapêutico , Adulto JovemRESUMO
Background: There was little evidence of autologous stem cell transplantation (ASCT) as consolidation therapy after remission of induction for patients with Peripheral T-cell lymphoma (PTCL). In this study, we conducted a comparative analysis of real-world survival outcomes between consolidation therapy and observation in patients with PTCL. Methods: A total of 92 patients with peripheral T-cell lymphoma (PTCL) who were admitted to the Department of Hematology, Huadong Hospital Affiliated with Fudan University from January 2013 to April 2019 were divided into two groups based on whether they were treated with high-dose therapy (HDT) followed by autologous hematopoietic stem cell transplantation (ASCT): ASCT as consolidation therapy (n=30) and observation (n=62). Clinical characteristics, treatment patterns, and survival outcomes were analyzed between the two groups. Univariate and Cox multivariate regression analyses were also performed to detect prognostic factors of survival. Results: With a median follow-up time of 41 months, the median overall survival (OS) of peripheral T-cell lymphoma patients treated with ASCT was not reached; the median progression-free survival (PFS) was 77.0 months, which was much higher than that of patients without ASCT (p<0.003 for OS, p=0.015 for PFS). Subgroup analysis found that patients with high risks benefited more from ASCT. Combination with hemophagocytic lymphohistiocytosis (HLH) (p<0.001), clinical stage more than III (p=0.014), IPI score above 3 (p=0.049), and bone marrow involvement (p=0.010) were the independent prognostic factors significantly associated with worse OS and PFS. Additionally, pegylated liposomal doxorubicin (PLD)-containing chemotherapy regimen could bring a higher overall response rate (ORR) and prolong the survival of patients with PTCL who underwent ASCT. Conclusion: ASCT may improve the long-term survival of patients with PTCL as consolidation therapy after achieving complete or partial remission of induction treatment, particularly for those with high risks. The chemotherapy regimen containing pegylated liposomal doxorubicin may induce deeper remission than traditional doxorubicin in PTCL. It is crucial to identify the specific groups most likely to benefit from upfront ASCT.
Assuntos
Quimioterapia de Consolidação , Transplante de Células-Tronco Hematopoéticas , Quimioterapia de Indução , Linfoma de Células T Periférico , Transplante Autólogo , Humanos , Linfoma de Células T Periférico/terapia , Linfoma de Células T Periférico/mortalidade , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Indução de Remissão , Idoso , Estudos Retrospectivos , Adulto Jovem , Resultado do Tratamento , Prognóstico , Terapia CombinadaRESUMO
There is considerable interest in quantifying anti-PEG antibodies, given their potential involvement in accelerated clearance, complement activation, neutralization, and acute reactions associated with drug delivery systems. Published and commercially available anti-PEG enzyme-linked immunosorbent assays (ELISAs) differ significantly in terms of reagents and conditions, which could be confusing to users who want to perform in-house measurements. Here, we optimize the ELISA protocol for specific detection of anti-PEG IgG and IgM in sera from healthy donors and in plasma from cancer patients administered with PEGylated liposomal doxorubicin. The criterion of specificity is the ability of free PEG or PEGylated liposomes to inhibit the ELISA signals. We found that coating high-binding plates with monoamine methoxy-PEG5000, as opposed to bovine serum albumin-PEG20000, and blocking with 1% milk, as opposed to albumin or lysozyme, significantly improve the specificity, with over 95% of the signal being blocked by competition. Despite inherent between-assay variability, setting the cutoff value of the optical density at the 80th percentile consistently identified the same subjects. Using the optimized assay, we longitudinally measured levels of anti-PEG IgG/IgM in cancer patients before and after the PEGylated liposomal doxorubicin chemotherapy cycle (1 month apart, three cycles total). Antibody titers did not show any increase but rather a decrease between treatment cycles, and up to 90% of antibodies was bound to the infused drug. This report is a step toward harmonizing anti-PEG assays in human subjects, emphasizing the cost-effectiveness and optimized specificity.
Assuntos
Doxorrubicina , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina M , Polietilenoglicóis , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Lipossomos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Polietilenoglicóis/uso terapêuticoRESUMO
Introduction: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods: Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results: Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion: EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doxorrubicina , Receptores ErbB , Neoplasias Pulmonares , Animais , Feminino , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ion concentration in liposomal drugs is important for drug stability and drug release profile. However, quantifying ion concentration in liposomal drugs is challenging due to the absence of chromophores or fluorophores of ions and the efficiency of their release from the liposome structure. To address these issues, a method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a charged aerosol detector (CAD) has been developed to determine total, internal, and external ions in drug-loaded liposomal products. In this protocol, we focused on the quantitation of ammonium and sulfate ions in liposomal products, using generic PEGylated liposomal doxorubicin as an example. This method can be extended to calcium, acetate, and other ions in different liposomal formulations with slight modifications.
Assuntos
Doxorrubicina , Lipossomos , Lipossomos/química , Cromatografia Líquida de Alta Pressão/métodos , Doxorrubicina/química , Cromatografia de Fase Reversa , Íons , AerossóisRESUMO
Purpose: This study aims to evaluate the short-term outcomes and prognosis and the cardiac safety of pegylated liposomal doxorubicin (PLD)-based neoadjuvant chemotherapy (NAC) compared with epirubicin-based therapy in breast cancer treatment. Methods: In total, 304 patients diagnosed with stages II and III breast cancer were enrolled that included 97 cases treated with PLD and 207 controls treated with epirubicin in NAC. The effectiveness of the antibreast cancer treatment was evaluated using overall survival (OS) and disease-free survival (DFS) metrics, whereas cardiac toxicity was measured through the left ventricular ejection fraction (LVEF) and electrocardiogram (ECG) assessments. Results: The 5-year DFS and OS rates in the PLD group were 84.5% and 88.7% (with 15 recurrences and 11 deaths), respectively, whereas in the control group, these rates were 72.9% and 79.2% (with 56 recurrences and 43 deaths). Regarding cardiac toxicity, there was no significant difference in ECG abnormalities or LVEF decline between the two groups. Conclusions: The study suggests that PLD-based NAC may provide substantial benefits in terms of DFS and OS, along with a safe cardiac toxicity profile, in patients with stage II-III breast cancer.
RESUMO
BACKGROUND: We investigated the tumor suppression effect of an ultrasound-sensitive doxorubicin-loaded liposome-based nanoparticle, IMP301, to enhance the synergistic effect with focused ultrasound (FUS) in an animal model of pancreatic cancer. METHODS: Thirty nude mice with xenografts of PANC-1 human pancreatic cancer cells were randomly and prospectively allocated to 6 different groups (5 per group) each for Study-1 (dose-response test) and Study-2 (synergistic effect test). Study-1 consisted of control, gemcitabine, Doxil with FUS, and three different doses of IMP301 (2, 4, 6 mg/kg) with FUS groups. Study-2 consisted of control, FUS only, gemcitabine, Doxil with FUS, and IMP301 (4 mg/kg) with or without FUS groups. Differences in tumor volume and growth rate were evaluated by one-way ANOVA and Student-Newman-Keuls test. RESULTS: In Study-1, 4 mg/kg or greater IMP301 with FUS groups showed lower tumor growth rates of 14 ± 4 mm3/day (mean ± standard deviation) or less, compared to the control, gemcitabine, and Doxil with FUS groups with rates exceeding 28 ± 5 (p < 0.050). The addition of FUS in Study-2 decreased the tumor growth rate in the IMP301-treated groups from 36 ± 17 to 9 ± 6, which was lower than the control, FUS only, gemcitabine, and Doxil with FUS groups (p < 0.050). CONCLUSIONS: IMP301 combined with FUS exhibited higher tumor growth suppression compared to the use of a conventional drug alone or the combination with FUS. The present study showed the potential of IMP301 to enhance the synergistic effect with FUS for the treatment of pancreatic cancer. RELEVANCE STATEMENT: This article aims to evaluate the synergistic effect of FUS and ultrasound-responsive liposomal drug in tumor growth suppression by using xenograft mouse model of pancreatic ductal adenocarcinoma. FUS-induced ultrasound-sensitive drug release may be a potential noninvasive repeatable treatment option for patients with locally advanced or unresectable pancreatic cancer. KEY POINTS: ⢠Modification of conventional drugs combined with FUS would maximize tumor suppression. ⢠IMP301 with FUS had higher tumor suppression effect compared to conventional chemotherapy. ⢠This image-guided drug delivery would enhance therapeutic effects of systemic chemotherapy.
Assuntos
Doxorrubicina/análogos & derivados , Nanopartículas , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Gencitabina , Xenoenxertos , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , PolietilenoglicóisRESUMO
BACKGROUND: TLD-1 is a novel liposomal doxorubicin that compared favorably to conventional doxorubicin liposomal formulations in preclinical models. This phase I first-in-human study aimed to define the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D), safety and preliminary activity of TLD-1 in patients with advanced solid tumors. PATIENTS AND METHODS: We recruited patients with advanced solid tumors who failed standard therapy and received up to 3 prior lines of palliative systemic chemotherapy. TLD-1 was administered intravenously every 3 weeks up to a maximum of 9 cycles (6 for patients with prior anthracyclines) from a starting dose of 10 mg/m2, according to an accelerated titration design followed by a modified continual reassessment method. RESULTS: 30 patients were enrolled between November 2018 and May 2021. No dose-limiting toxicities (DLT) were observed. Maximum administered dose of TLD-1 was 45 mg/m2, RP2D was defined at 40 mg/m2. Most frequent treatment-related adverse events (TRAE) of any grade included palmar-plantar erythrodysesthesia (PPE) (50% of patients), oral mucositis (50%), fatigue (30%) and skin rash (26.7%). Most common G3 TRAE included PPE in 4 patients (13.3%) and oral mucositis in 2 (6.7%). Overall objective response rate was 10% in the whole population and 23.1% among 13 patients with breast cancer; median time-to-treatment failure was 2.7 months. TLD-1 exhibit linear pharmacokinetics, with a median terminal half-life of 95 h. CONCLUSIONS: The new liposomal doxorubicin formulation TLD-1 showed a favourable safety profile and antitumor activity, particularly in breast cancer. RP2D was defined at 40 mg/m2 administered every 3 weeks. (NCT03387917).
Assuntos
Neoplasias da Mama , Doxorrubicina/análogos & derivados , Neoplasias , Estomatite , Humanos , Feminino , Neoplasias/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Polietilenoglicóis , Estomatite/etiologia , Dose Máxima Tolerável , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
In the century of precision medicine and predictive modeling, addressing quality-related issues in the medical supply chain is critical, with 62 % of the disruptions being attributable to quality challenges. This study centers on the development and safety of liposomal doxorubicin, where animal studies alone often do not adequately explain the complex interplay between critical quality attributes and in vivo performances. Anchored in our aim to elucidate this in vitro-in vivo nexus, we compared TLD-1, a novel liposomal doxorubicin delivery system, against the established formulations Doxil® and Lipodox®. Robust in vitro-in vivo correlations (IVIVCs) with excellent coefficients of determination (R2 > 0.98) were obtained in the presence of serum under dynamic high-shear conditions. They provided the foundation for an advanced characterization and benchmarking strategy. Despite the smaller vesicle size and reduced core crystallinity of TLD-1, its release behavior closely resembled that of Doxil®. Nevertheless, subtle differences between the dosage forms observed in the in vitro setting were reflected in the bioavailabilities observed in vivo. Data from a Phase-I clinical trial facilitated the development of patient-specific IVIVCs using the physiologically-based nanocarrier biopharmaceutics model, enabling a more accurate estimation of doxorubicin exposure. This advancement could impact clinical practice by allowing for more precise dose estimation and aiding in the assessment of the interchangeability of generic liposomal doxorubicin.