Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39159210

RESUMO

Composite solid polymer electrolytes (CSPEs) are safer alternatives to liquid electrolytes and excellent candidates for high-voltage solid-state batteries. However, interfacial instabilities between the electrodes and CSPEs are one of the bottlenecks in pursuing these systems. In this study, a cross-linked CSPE was synthesized based on polypropylene carbonate, polyethylene glycol methyl ether acrylate, polyethylene glycol diacrylate with additives including lithium bis(trifluoromethane)sulfonimide salt, and tantalum-doped lithium lanthanum zirconium oxide (LLZTO). Mass fractions of 10, 20, and 40% LLZTO were added to the CSPE matrix. In a symmetric cell, lithium plating and stripping revealed that the interface between the lithium metal anode and CSPE with 10% of the LLZTO (CSPE-10LLZTO) shows the most stable interface. The CSPE-10LLZTO sample demonstrated high flexibility and showed no degradation over 800 h of cycling at varying current densities. The ionic conductivity for the CSPE-10LLZTO sample at 40 °C was 6.4 × 10-4 S/cm. An all-solid-state full cell was fabricated with LiNi0.5Mn0.3Co0.2O2 as the cathode, CSPE-10LLZTO as the electrolyte and separator, and Li metal as the anode, delivering approximately 140 mAh/g of capacity. Differential scanning calorimetry measurements on CSPE-xLLZTO showed high miscibility and the elimination of crystallinity. Raman spectroscopy revealed uniformity in the structure. These findings demonstrate the capability of the CSPEs to develop high-voltage solid-state lithium metal batteries.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39189968

RESUMO

Lithiated Cu current collectors with a lean Li supply have been extensively explored as prospective composite anodes for constructing lithium metal batteries (LMBs) but suffer from low Coulombic efficiencies (CE) and uncontrollable dendrite growth. Herein, two hexaazanonaphthalene (HATN)-based compounds comprising rich conjugated aromatic rings and redox-active C═N groups are synthesized and exploited to modify the Cu surface for mediating smooth Li plating/stripping. Compared to the HATN compound interlinked through flexible sigma bonds, the one conjugated through dual sp2-carbon manifests a more rigid backbone, improved electric conductivity, and enhanced mesoporosity. As a result, Cu electrodes modified with the latter demonstrate enhanced CE and suppressed dendrites in both half and symmetric cells, apart from a stable operation over 250 cycles in the LiFePO4 full cells with a capacity retention of 94.9% at 1 C. This study signifies the tailoring of intramolecular conjugation and chain configuration of lithiophilic macromolecules to facilitate reversible Li deposition on Cu for achieving high-performance LMBs.

3.
Angew Chem Int Ed Engl ; : e202410463, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141694

RESUMO

Solid inorganics, known for kinetically inhibiting polymer crystallization and enhancing ionic conductivity, have attracted significant attention in solid polymer electrolytes. However, current composite polymer electrolytes (CPEs) are still facing challenges in Li metal batteries, falling short of inhibiting severe dendritic growth and resulting in very limited cycling life. This study introduces Ga62.5In21.5Sn16 (Galinstan) liquid metal (LM) as an active liquid alternative to conventional passive solid fillers, aiming at realizing self-healing protection against dendrite problems. Compared to solid inorganics, for example silica, LM droplets could more significantly reduce polymer crystallinity and enhance Li-ion conductivity due to their liquid nature, especially at temperatures below the polymer melting point. More importantly, LMs are unraveled as dynamic chemical traps, which are capable of blocking and consuming lithium dendrites upon contact via in situ alloying during battery operation and further inhibiting dendritic growth due to the lower deposition energy barrier of the formed Li-LM alloy. As a proof of concept, by strategically designing an asymmetric CPE with the active LM filling, a solid-state Li/LiFePO4 battery achieves promising full-cell functionality with notable rate performance and stable cycle life. This active filler-mediated self-healing approach could bring new insights into the battery design in versatile solid-state systems.

4.
ACS Nano ; 18(33): 22560-22571, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39109932

RESUMO

Lithium metal batteries (LMBs) with LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes have garnered significant interest as next-generation energy storage devices due to their high energy density. However, the instability of their electrode/electrolyte interfaces in regular carbonate electrolytes (RCEs) results in a rapid capacity decay. To address this, a colloid electrolyte consisting of Li3P nanoparticles uniformly dispersed in the RCE is developed by a one-step synthesis. This design concurrently creates stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) on both electrode surfaces. The cathode interface derived from this colloid electrolyte significantly facilitates the decomposition of Li salts (LiPF6 and LiDFOB) on the cathode surface by weakening the P-F and B-F bonds. This in situ formed P/LiF-rich CEI effectively protects the NCM811 cathode from side reactions. Furthermore, the Li3P embedded in the SEI optimizes and homogenizes the Li-ion transport, enabling dendrite-free Li deposition. Compared to the RCE, the designed colloid electrolyte enables robust cathode and anode interfaces in NCM811||Li full cells, minimizing gas and dendrite formation, and delivering a superior capacity retention of 82% over 120 cycles at a 4.7 V cutoff voltage. This approach offers different insights into electrolyte regulation and explores alternative electrolyte shapes and formulations.

5.
J Colloid Interface Sci ; 677(Pt B): 1084-1094, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39180843

RESUMO

Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li+ flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm-2 and 10 mAh cm-2, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g-1 is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.

6.
Angew Chem Int Ed Engl ; : e202410818, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018162

RESUMO

Gel polymer electrolytes (GPEs) hold great promise for the practical application of lithium metal batteries. However, conventional GPEs hardly resists lithium dendrites growth and maintains long-term cycling stability of the battery due to its poor mechanical performance. Inspired by the slide-ring structure of polyrotaxanes (PRs), herein we developed a dynamic slide-crosslinked gel polymer electrolyte (SCGPE) with extraordinary stretchability of 970.93% and mechanical strength of 1.15 MPa, which is helpful to buffer the volume change of electrodes and maintain mechanical integrity of the battery structure during cycling. Notably, the PRs structures can provide fast ion transport channels to obtain high ionic conductivity of 1.73×10-3 S cm-1 at 30°C. Additionally, the strong polar groups in SCGPE restrict the free movement of anions to achieve high lithium-ion transference number of 0.71, which is favorable to enhance Li+ transport dynamics and induce uniform Li+ deposition. Benefiting from these features, the constructed Li|SCGPE-3|LFP cells exhibit ultra-long and stable cycle life over 1000 cycles and high-capacity retention (89.6% after 1000 cycles). Even at a high rate of 16C, the cells deliver a high capacity of 79.2 mAh g-1. The slide-crosslinking strategy in this work provides a new perspective on the design of advanced GPEs for LMBs.

7.
Angew Chem Int Ed Engl ; : e202409044, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005168

RESUMO

The practical application of solid polymer electrolyte is hindered by the small transference number of Li+, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li+ in the electrolyte. Therefore, flower-like SnS2-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS2 have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in-situ formed Li2S/Li3N at the interface of Li metal and electrolyte facilitate the fast Li+ diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.

8.
ACS Nano ; 18(28): 18729-18742, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951993

RESUMO

The development of lithium metal batteries (LMBs) is severely hindered owing to the limited temperature window of the electrolyte, which renders uncontrolled side reactions, unstable electrolyte/electrode interface (EEI) formation, and sluggish desolvation kinetics for wide temperature operation condition. Herein, we developed an all-fluorinated electrolyte composed of lithium bis(trifluoromethane sulfonyl)imide, hexafluorobenzene (HFB), and fluoroethylene carbonate, which effectively regulates solvation structure toward a wide temperature of 160 °C (-50 to 110 °C). The introduction of thermostable HFB induces the generation of EEI with a high LiF ratio of 93%, which results in an inhibited side reaction and gas generation on EEI and enhanced interfacial ion transfer at extreme temperatures. Therefore, an unparalleled capacity retention of 88.3% after 400 cycles at 90 °C and an improved cycling performance at -50 °C can be achieved. Meanwhile, the practical 1.3 Ah-level pouch cell delivers high energy density of 307.13 Wh kg-1 at 60 °C and 277.99 Wh kg-1 at -30 °C after 50 cycles under lean E/C ratio of 2.7 g/Ah and low N/P ratio of 1.2. This work not only offers a viable strategy for wide-temperature-range electrolyte design but also promotes the practicalization of LMBs.

9.
ACS Appl Mater Interfaces ; 16(28): 37052-37062, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965714

RESUMO

Covalent organic framework (COF) aerogels with functional groups offer exceptional processability and functionality for various applications. These hierarchical porous materials combine the advantages of COFs with the benefits of aerogels, overcoming the limitations of conventional insoluble and nonfusible COF powders. However, achieving both high crystallinity and shape retention remains a challenge for functionalized COF aerogels. In this work, we develop a novel and general solvent substitution method for the one-step synthesis of formyl-functionalized COF aerogels without harsh vacuum conditions. These aerogels exhibit excellent processing capabilities, superior mechanical strength, and enhanced functionality. As a proof-of-concept, they were used in adsorption and lithium metal battery applications, significantly maximizing the structural advantages of COFs, e.g.: (i) the hierarchical porous structure is fully wetted by the electrolyte to form continuous transport channels; (ii) the polar groups, which are easier to be acquired, help in desolvation and transfer of Li+; (iii) the regular pore structures stabilize deposition of Li+ and inhibit the growth of lithium dendrites. These combined benefits contribute to a lighter battery with improved energy density and enhanced safety.

10.
ChemSusChem ; : e202401029, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075647

RESUMO

Li||LiNi0.8Co0.1Mn0.1O2 batteries,which consist of lithium  metal anode (LMA) matched with NCM811 cathode, have an energy density more than twice that of lithium ion battery (LIB). However, the unstable electrode/electrolyte interface still hinders its practical application.Ether electrolytes show promise in improving the stability of LMA and NCM811 cathodes.However, a robust and stable electrode/electrolyte interface in Li||NCM811 batteries cannot be easily and efficiently achieved with most of the ether electrolytes reported in present studies. Herein, we present a straightforward and efficient tri-anion synergistic strategy to overcome this bottleneck. The addition of ClO4- and NO3- anions to LiFSI-based ether electrolytes forms a unique solvation structure with tri-anion (FSI-/ClO4-/NO3-) participation (LB511).This structure not only enhances the electrochemical window of the ether electrolytes but also achieves a stable Li||NCM811 batteries interface.The interaction between electrode and electrolyte is suppressed and an inorganic-rich (LiF/Li3N/LiCl) SEI/CEI layer is formed. Meanwhile, the coordination structure in the LB511 electrolyte increases the overpotential for Li deposition, resulting in a uniform and dense layer of deposition.Therefore, the Li||Cu cells using the LB511 electrolyte have an average CE of 99.6%.The Li||NCM811 batteries was cycled stably for 250 cycles with a capacity retention of 81% in the LB511 electrolyte (N/P = 2.5, 0.5 C).

11.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891549

RESUMO

Solid polymer electrolytes (SPEs) are the key components of lithium metal batteries to overcome the obstacle of insecurity in conventional liquid electrolytes; however, the trade-off between their ionic conductivity and mechanical properties remains a significant challenge. In this work, two-dimensional ZSM-5 nanosheets as fillers are incorporated into a poly(ethylene oxide) (PEO) matrix and lithium salts to obtain composite polymer electrolytes (CPEs). The improved physicochemical and electrochemical properties of the CPE membranes are characterized in full detail. Stripping/plating measurements in symmetric Li/Li cells and cyclic charge/discharge tests are performed to investigate the cyclability and stability of the CPEs. All-solid-state LiFePO4/Li batteries deliver excellent cycling performance with an initial discharge capacity of 152.3 mAh g-1 and 91.4% capacity retention after 200 cycles at 0.2 C, with a discharge specific capacity of 118.8 mAh g-1 remaining after 350 cycles at 0.5 C. Therefore, CPEs containing ZSM-5 nanosheets are a promising option for all-solid-state lithium-ion batteries.

12.
Adv Mater ; 36(32): e2404630, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857546

RESUMO

The extreme fast charging performance of lithium metal batteries (LMBs) with a long life is an important focus in the development of next-generation battery technologies. The friable solid electrolyte interphase and dendritic lithium growth are major problems. The formation of an inorganic nanocrystal-dominant interphase produced by preimmersing the Li in molten lithium bis(fluorosulfonyl)imide that suppresses the overgrowth of the usual interphase is reported. Its high surface modulus combined with fast Li+ diffusivity enables a reversible dendrite-proof deposition under ultrahigh-rate conditions. It gives a record-breaking cumulative plating/stripping capacity of >240 000 mAh cm-2 at 30 mA cm-2@30 mAh cm-2 for a symmetric cell and an extreme fast charging performance at 6 C for 500 cycles for a Li||LiCoO2 full cell with a high-areal-capacity, thus expanding the use of LMBs to high-loading and power-intensive scenarios. Its usability both in roll-to-roll production and in different electrolytes indicating the scalable and industrial potential of this process for high-performance LMBs.

13.
ACS Appl Mater Interfaces ; 16(27): 34902-34912, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38904546

RESUMO

The separator is a crucial component in lithium batteries, as it physically separates the cathode and the anode while allowing ion transfer through the internal channel. The pore structure of the separator significantly influences the performance of lithium batteries, particularly lithium metal batteries. In this study, we investigate the use of a Janus separator composed of poly(ethylene terephthalate) (PET)-polytetrafluoroethylene (PTFE) fibers in lithium metal batteries. This paper presents a comprehensive analysis of the impact of this asymmetric material on the cycling performance of the battery alongside an investigation into the influence of two different substrates on lithium-ion deposition behavior. The research findings indicate that when the rigid PET side faces the lithium metal anode and the soft PTFE side faces the cathode, it significantly extends the cycling lifespan of lithium metal batteries, with an impressive 82.6% capacity retention over 2000 cycles. Furthermore, this study demonstrates the versatility of this separator type in lithium metal batteries by assembling the lithium metal electrode with high cathode-loading capacities (4 mA h/cm2). In conclusion, the results suggest that the design of asymmetric separators can serve as an effective engineering strategy with substantial potential for enhancing the lifespan of lithium metal batteries.

14.
ACS Appl Mater Interfaces ; 16(26): 33578-33589, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38905020

RESUMO

Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm-2. Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g-1 at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.

15.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856230

RESUMO

Lithium metal batteries utilizing lithium metal as the anode can achieve a greater energy density. However, it remains challenging to improve low-temperature performance and fast-charging features. Herein, we introduce an electrolyte solvation chemistry strategy to regulate the properties of ethylene carbonate (EC)-based electrolytes through intermolecular interactions, utilizing weakly solvated fluoroethylene carbonate (FEC) to replace EC, and incorporating the low-melting-point solvent 1,2-difluorobenzene (2FB) as a diluent. We identified that the intermolecular interaction between 2FB and solvent can facilitate Li+ desolvation and lower the freezing point of the electrolyte effectively. The resulting electrolyte enables the LiNi0.8Co0.1Mn0.1O2||Li cell to operate at -30 °C for more than 100 cycles while delivering a high capacity of 154 mAh g-1 at 5.0C. We present a solvation structure and interfacial model to analyze the behavior of the formulated electrolyte composition, establishing a relationship with cell performance and also providing insights for the electrolyte design under extreme conditions.

16.
Small ; : e2402164, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881322

RESUMO

Thin and flexible solid-state electrolyte (SSE) films with high ionic conductivity and low interfacial resistance are urgently required for lithium metal batteries (LMBs). However, it's still challenging to reduce the film thickness to <20 µm, especially for those with high ceramic contents. Herein, a facile slurry casting method is developed to prepare the ultra-thin (14 µm) Li3Zr2Si2PO12 (LZSP) films with ceramic content up to 91% using a composite polymer binder, polyvinylidene fluoride (PVDF), and polyethylene oxide (PEO). It shows that PEO not only enhanced the film flexibility but also makes it be easily peeled off to form a freestanding membrane, PLN. To promote the interfacial ion transport, PEO/lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) is introduced to the film surface, and the resultant tri-layer film, PPLN, shows a satisfying room temperature ionic conductivity of 0.116 mS cm-1, high Li+ transference number of 0.79, and good compatibility with metal lithium. As a result, LMBs using LiFePO4 cathode and PPLN electrolyte exhibit excellent safety as well as electrochemical performances in the wide temperature range between room temperature (RT) and 100 °C.

17.
ACS Nano ; 18(24): 15387-15415, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843224

RESUMO

Solid-state lithium metal batteries (SSLMBs) have gained significant attention in energy storage research due to their high energy density and significantly improved safety. But there are still certain problems with lithium dendrite growth, interface stability, and room-temperature practicality. Nature continually inspires human development and intricate design strategies to achieve optimal structural applications. Innovative solid-state electrolytes (SSEs), inspired by diverse natural species, have demonstrated exceptional physical, chemical, and mechanical properties. This review provides an overview of typical bionic-structured materials in SSEs, particularly those mimicking plant and animal structures, with a focus on their latest advancements in applications of solid-state lithium metal batteries. Commencing from plant structures encompassing roots, trunks, leaves, flowers, fruits, and cellular levels, the detailed influence of biomimetic strategies on SSE design and electrochemical performance are presented in this review. Subsequently, the recent progress of animal-inspired nanostructures in SSEs is summarized, including layered structures, surface morphologies, and interface compatibility in both two-dimensional (2D) and three-dimensional (3D) aspects. Finally, we also evaluate the current challenges and provide a concise outlook on future research directions. We anticipate that the review will provide useful information for future reference regarding the design of bionic-structured materials in SSEs.

18.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893331

RESUMO

To realize high-energy-density Li metal batteries at low temperatures, a new electrolyte is needed to solve the high-voltage compatibility and fast lithium-ion de-solvation process. A gel polymer electrolyte with a small-molecular-weight polymer is widely investigated by combining the merits of a solid polymer electrolyte (SPE) and liquid electrolyte (LE). Herein, we present a new gel polymer electrolyte (P-DOL) by the lithium difluoro(oxalate)borate (LiDFOB)-initiated polymerization process using 1,3-dioxolane (DOL) as a monomer solvent. The P-DOL presents excellent ionic conductivity (1.12 × 10-4 S cm-1) at -20 °C, with an oxidation potential of 4.8 V. The Li‖LiCoO2 cell stably cycled at 4.3 V under room temperature, with a discharge capacity of 130 mAh g-1 at 0.5 C and a capacity retention rate of 86.4% after 50 cycles. Moreover, a high-Ni-content LiNi0.8Co0.1Mn0.1O2 (NCM811) cell can steadily run for 120 cycles at -20 °C, with a capacity retention of 88.4%. The underlying mechanism of high-voltage compatibility originates from the dense and robust B- and F-rich cathode interface layer (CEI) formed at the cathode interface. Our report will shed light on the real application of Li metal batteries under all-climate conditions in the future.

19.
ACS Nano ; 18(26): 16842-16852, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912721

RESUMO

The accelerated formation of lithium dendrites has considerably impeded the advancement and practical deployment of all-solid-state lithium metal batteries (ASSLMBs). In this study, a soft carbon (SC)-Li3N interface layer was developed with both ionic and electronic conductivity, for which the in situ lithiation reaction not only lithiated SC into LiC6 with good electronic/ionic conductivity but also successfully transformed the mixed-phase Li3N into pure-phase ß-Li3N with a high ionic conductivity/ion diffusion coefficient and stability to lithium metal. The mixed conductive interface layer facilitates fast Li+ transport at the interface and induces the homogeneous deposition of lithium metal inside it. This effectively inhibits the formation of lithium dendrites and greatly improves the performance of the ASSLMB. The ASSLMB assembled with the SC-Li3N interface layer exhibits high areal capacity (15 mA h cm-2), high current density (7.5 mA cm-2), and long cycle life (6000 cycles). These results indicate that this interface layer has great potential for practical applications in high-energy-density ASSLMBs.

20.
ACS Nano ; 18(27): 17439-17468, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934250

RESUMO

Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA