Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(21): e2312880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330999

RESUMO

While layered metal oxides remain the dominant cathode materials for the state-of-the-art lithium-ion batteries, conversion-type cathodes such as sulfur present unique opportunities in developing cheaper, safer, and more energy-dense next-generation battery technologies. There has been remarkable progress in advancing the laboratory scale lithium-sulfur (Li-S) coin cells to a high level of performance. However, the relevant strategies cannot be readily translated to practical cell formats such as pouch cells and even battery pack. Here these key technical challenges are addressed by molecular engineering of the Li metal for hydrophobicization, fluorination and thus favorable anode chemistry. The introduced tris(2,4-di-tert-butylphenyl) phosphite (TBP) and tetrabutylammonium fluoride (TBA+F-) as well as cellulose membrane by rolling enables the formation of a functional thin layer that eliminates the vulnerability of Li metal towards the already demanding environment required (1.55% relative humidity) for cell production and gives rise to LiF-rich solid electrolyte interphase (SEI) to suppress dendrite growth. As a result, Li-S pouch cells assembled at a pilot production line survive 400 full charge/discharge cycles with an average Coulombic efficiency of 99.55% and impressive rate performance of 1.5 C. A cell-level energy density of 417 Wh kg-1 and power density of 2766 W kg-1 are also delivered via multilayer Li-S pouch cell. The Li-S battery pack can even power an unmanned aerial vehicle of 3 kg for a fairly long flight time. This work represents a big step forward acceleration in Li-S battery marketization for future energy storage featuring improved safety, sustainability, higher energy density as well as reduced cost.

2.
Adv Mater ; 36(4): e2307651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010278

RESUMO

Although various excellent electrocatalysts/adsorbents have made notable progress as sulfur cathode hosts on the lithium-sulfur (Li-S) coin-cell level, high energy density (WG ) of the practical Li-S pouch cells is still limited by inefficient Li-ion transport in the thick sulfur cathode under low electrolyte/sulfur (E/S) and negative/positive (N/P) ratios, which aggravates the shuttle effect and sluggish redox kinetics. Here a new ternary fluoride MgAlF5 ·2H2 O with ultrafast ion conduction-strong polysulfides capture integration is developed. MgAlF5 ·2H2 O has an inverse Weberite-type crystal framework, in which the corner-sharing [AlF6 ]-[MgF4 (H2 O)2 ] octahedra units extend to form two-dimensional Li-ion transport channels along the [100] and [010] directions, respectively. Applied as the cathode sulfur host, the MgAlF5 ·2H2 O lithiated by LiTFSI (lithium salt in Li-S electrolyte) acts as a fast ionic conductor to ensure efficient Li-ion transport to accelerate the redox kinetics under high S loadings and low E/S and N/P. Meanwhile, the strong polar MgAlF5 ·2H2 O captures polysulfides by chemisorption to suppress the shuttle effect. Therefore, a 1.97 A h-level Li-S pouch cell achieves a high WG of 386 Wh kg-1 . This work develops a new-type ionic conductor, and provides unique insights and new hosts for designing practical Li-S pouch cells.

3.
Nanoscale Res Lett ; 17(1): 112, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36427166

RESUMO

Lithium-sulfur (Li-S) cells have been regarded as attractive alternatives to achieve higher energy densities because of their theoretical specific energy far beyond the lithium-ion cells. However, the achieved results of Li-S cells are exaggerating the cycle performance in their pouch formats because the considerable works are based on the coin cells where flood electrolyte and endless Li supply ensure the Li metal with nature structure features, resulting in a negligible effect on cycle performance caused by the Li dendrites and electrolyte dissipation during cycles. Herein, we demonstrate a strategy to enable the Li metal with lithium fluoride (LiF)-rich solid electrolyte interface via integrating a reinforced interface (RI) embedded with nano-LiF particles on the surface of the Li metal anode. The RI interface enables the solvent molecules of the electrolyte to gain fewer electrons from Li anode, resulting in a lower leakage current of assembled RI||Li-S cell (~ 0 µA) than pristine Li anode (~ 1.15 µA). Moreover, these results show that suppressing lithium dendrite growth is more urgent than inhibiting the shuttle effect of polysulfides in the pouch cell format. As a result, the RI layer-engineered Li metal bears witness to the cyclic stability of Li anode over 800 h, thus achieving stable cycles of Ah-scale Li-S pouch cell with an energy density of 410 Wh/kg at a current of 200 mA per cell. Our study demonstrates that the suppression of lithium dendrites by the RI could be a promising method to prolong the cycle number of Li-S pouch cells.

4.
Adv Sci (Weinh) ; 9(33): e2204027, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216582

RESUMO

The viability of lithium-sulfur (Li-S) batteries toward real implementation directly correlates with unlocking lithium polysulfide (LiPS) evolution reactions. Along this line, designing promotors with the function of synchronously relieving LiPS shuttle and promoting sulfur conversion is critical. Herein, the nitrogen evolution on hierarchical and atomistic Ni-N-C electrocatalyst, mainly pertaining to the essential subtraction, reservation and coordination of nitrogen atoms, is manipulated to attain favorable Li-S pouch cell performances. Such rational evolution behavior realizes the "nitrogen balance" in simultaneously regulating the Ni-N coordination environment, Ni single atom loading, abundant vacancy defects, active nitrogen and electron conductivity, and maximizing the electrocatalytic activity elevation of Ni-N-C system. With such merit, the cathode harvests favorable performances in a soft-packaged pouch cell prototype even under high sulfur mass loading and lean electrolyte usage. A specific energy density up to 405.1 Wh kg-1 is harvested by the 0.5-Ah-level pouch cell.

5.
Adv Sci (Weinh) ; 5(9): 1700934, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250778

RESUMO

Although the reversible and inexpensive energy storage characteristics of the lithium-sulfur (Li-S) battery have made it a promising candidate for electrical energy storage, the dendrite growth (anode) and shuttle effect (cathode) hinder its practical application. Here, it is shown that new electrolytes for Li-S batteries promote the simultaneous formation of bilateral solid electrolyte interfaces on the sulfur-host cathode and lithium anode, thus effectively suppressing the shuttle effect and dendrite growth. These high-capacity Li-S batteries with new electrolytes exhibit a long-term cycling stability, ultrafast-charge/slow-discharge rates, super-low self-discharge performance, and a capacity retention of 94.9% even after a 130 d long storage. Importantly, the long cycle stability of these industrial grade high-capacity Li-S pouch cells with new electrolytes will provide the basis for creating robust energy dense Li-S batteries with an extensive life cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA