RESUMO
Laryngeal carcinoma (LC) is a common cancer of the respiratory tract. This study aims to investigate the role of RNA-binding motif protein 15 (RBM15) in the cisplatin (DDP) resistance of LC cells. LC-DDP-resistant cells were constructed. RBM15, lysine-specific demethylase 5B (KDM5B), lncRNA Fer-1 like family member 4 (FER1L4), lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family (ACSL4) was examined. Cell viability, IC50, and proliferation were assessed after RBM15 downregulation. The enrichment of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and N6-methyladenosine (m6A) on KDM5B was analyzed. KDM5B mRNA stability was measured after actinomycin D treatment. A tumor xenograft assay was conducted to verify the role of RBM15 in LC. Results showed that RBM15 was upregulated in LC and its knockdown decreased IC50, cell viability, proliferation, glutathione, and upregulated iron ion content, ROS, malondialdehyde, ACSL4, and ferroptosis. Mechanistically, RBM15 improved KDM5B stability in an IGF2BP3-dependent manner, resulting in FER1L4 downregulation and GPX4 upregulation. KDM5B increased KCNQ1OT1 and inhibited ACSL4. KDM5B/KCNQ1OT1 overexpression or FER1L4 knockdown promoted DDP resistance in LC by inhibiting ferroptosis. In conclusion, RBM15 promoted KDM5B expression, and KDM5B upregulation inhibited ferroptosis and promoted DDP resistance in LC by downregulating FER1L4 and upregulating GPX4, as well as by upregulating KCNQ1OT1 and inhibiting ACSL4. Silencing RBM15 inhibited tumor growth in vivo.
Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Ferroptose , Neoplasias Laríngeas , Proteínas de Ligação a RNA , Ferroptose/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Camundongos , Animais , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismoRESUMO
OBJECTIVE: The objective of this study is to explore the functions and mechanisms of the LncRNA-KCNQ1OT1/miR-29a-3p/SOCS3 molecular pathway in the context of unexplained recurrent spontaneous abortion (URSA). METHODS: We conducted qRT-PCR to assess the levels of LncRNA-KCNQ1OT1, miR-29a-3p, and SOCS3 in both abortion tissues from women who experienced URSA and healthy early pregnant women. A dual-luciferase assay was employed to investigate whether miR-29a-3p targets SOCS3. Furthermore, RNA IP and RNA Pull-Down assays were employed to confirm the interaction between KCNQ1OT1 and SOCS3 with miR-29a-3p. RNA FISH was used to determine the cellular localization of KCNQ1OT1. Additionally, trophoblast cells (HTR8/SVneo) were cultured and the CCK-8 assay was utilized to assess cell proliferation, while flow cytometry was employed to analyze cell apoptosis. RESULTS: Compared to abortion tissues obtained from healthy early pregnant individuals, those from women who experienced URSA displayed a notable downregulation of KCNQ1OT1 and SOCS3, accompanied by an upregulation of miR-29a-3p. Suppression of KCNQ1OT1 resulted in the inhibition of cell proliferation and the facilitation of apoptosis in HTR8/SVneo cells. Our findings suggest that KCNQ1OT1 may exert a regulatory influence on SOCS3 through a competitive binding mechanism with miR-29a-3p. Notably, KCNQ1OT1 exhibited expression in both the cytoplasm and nucleus, with a predominant localization in the cytoplasm. Furthermore, we observed a negative regulatory relationship between miR-29a-3p and SOCS3, as the miR-29a-3p mimic group demonstrated significantly reduced cell proliferation and an increased rate of apoptosis when compared to the negative control (NC mimic) group. Additionally, the SOCS3 Vector group exhibited a substantial improvement in proliferation capability and a marked reduction in the apoptosis rate in comparison to the NC Vector group. The miR-29a-3p mimic + SOCS3 Vector group demonstrated a remarkable enhancement in proliferation and a reduction in apoptosis when compared to the miR-29a-3p mimic group. CONCLUSION: The competitive binding of miR-29a-3p to LncRNA-KCNQ1OT1 appears to result in the elevation of SOCS3 expression, consequently fostering the proliferation of trophoblast cells while concomitantly suppressing apoptosis.
Assuntos
Aborto Habitual , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Gravidez , Aborto Habitual/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismoRESUMO
This study investigates the role and molecular mechanism of EZH2 in glioma cell proliferation, invasion, and migration. EZH2, miR-142-3p, lncRNA KCNQ1OT1, LIN28B, and HMGB3 expressions in glioma tissues and cells were determined using qRT-PCR or Western blot, followed by CCK-8 assay detection of cell viability, Transwell detection of invasion and migration, ChIP analysis of the enrichment of EZH2 and H3K27me3 on miR-142-3p promoter, dual-luciferase reporter assay and RIP validation of the binding of miR-142-3p-KCNQ1OT1 and KCNQ1OT1-LIN28B, and actinomycin D detection of KCNQ1OT1 and HMGB3 mRNA stability. A nude mouse xenograft model and a lung metastasis model were established. EZH2, KCNQ1OT1, LIN28B, and HMGB3 were highly expressed while miR-142-3p was poorly expressed in gliomas. EZH2 silencing restrained glioma cell proliferation, invasion, and migration. EZH2 repressed miR-142-3p expression by elevating the H3K27me3 level. miR-142-3p targeted KCNQ1OT1 expression, and KCNQ1OT1 bound to LIN28B to stabilize HMGB3 mRNA, thereby promoting its protein expression. EZH2 silencing depressed tumor growth and metastasis in nude mice via the miR-142-3p/KCNQ1OT1/HMGB3 axis. In conclusion, EZH2 curbed miR-142-3p expression, thereby relieving the inhibition of KCNQ1OT1 expression by miR-142-3p, enhancing the binding of KCNQ1OT1 to LIN28B, elevating HMGB3 expression, and ultimately accelerating glioma cell proliferation, invasion, and migration.
Assuntos
Movimento Celular , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Glioma , Proteína HMGB3 , Camundongos Nus , MicroRNAs , Invasividade Neoplásica , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Movimento Celular/genética , Animais , Linhagem Celular Tumoral , Proteína HMGB3/metabolismo , Proteína HMGB3/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , FemininoRESUMO
The role of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in colon cancer involves various tumorigenic processes and has been studied widely. However, the mechanism by which it promotes colon cancer remains unclear. Retroviral vector pSEB61 was retrofitted in established HCT116-siKCN and SW480-siKCN cells to silence KCNQ1OT1. Cellular proliferation was measured using CCK8 assay, and flow cytometry (FCM) detected cell cycle changes. RNA sequencing (RNA-Seq) analysis showed differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways. RT-qPCR, immunofluorescence, and western blotting were carried out to validate downstream gene expressions. The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts. Our data revealed that the silencing of KCNQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase. RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cycle. RT-qPCR, immunofluorescence, and western blotting confirmed downstream CCNE2 and PCNA gene expressions. HCT116-siKCN cells significantly suppressed tumorigenesis in BALB/c nude mice. Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.
Assuntos
Neoplasias do Colo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , RNA Longo não Codificante , Animais , Humanos , Camundongos , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismoRESUMO
BACKGROUND: The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS: An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RTâqPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS: Myocardial ischemiaâreperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION: LncRNA KCNQ1OT1 aggravates ischemiaâreperfusion-induced cardiac injury via miR-377-3P/HMOX1.
Assuntos
MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Humanos , Apoptose , Heme Oxigenase-1/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Enhanced invasion and migration of non-small cell lung cancer (NSCLC) cells is the major cause of metastasis and poor prognosis in NSCLC. This study was conducted to investigate the role and mechanism of lncRNA KCNQ1OT1 in the proliferation, invasion, and migration of NSCLC cells. The expression of KCNQ1OT1 in NSCLC was analyzed in the StarBase database, and the target miRNA of KCNQ1OT1 as well as the target genes of the miRNA was predicted. Then, the mRNA expression levels of KCNQ1OT1, miR-496, and HMGB1 were detected in clinical tissue samples and cells by qRT-PCR assay. Besides, the protein levels of HMGB1 were detected by Western blot. MTT assay, transwell assay, and scratch assay were used to determine the proliferation, invasion, and migration ability of NSCLC cells, respectively. Correlation analysis was performed to assess the correlation between the expression of KCNQ1OT1, miR-496, and HMGB1 in clinical NSCLC samples. Dual-luciferase reporter gene assay was conducted to analyze the interaction between KCNQ1OT1 and miR-496 and between miR-496 and HMGB1. The database results showed that KCNQ1OT1 was highly expressed in NSCLC. Similarly, we found that the expression level of KCNQ1OT1 was significantly higher in NSCLC tissues and cells than that in the corresponding normal tissues and cells. The results of MTT assay, transwell assay, and scratch assay demonstrated that KCNQ1OT1 significantly enhanced the proliferation, invasion, and migration of NSCLC cells. Further mechanism exploration revealed that KCNQ1OT1 could sponge miR-496, and miR-496 directly targeted and regulated the expression of HMGB1. The expression of miR-496 and either KCNQ1OT1 or HMGB1 were negatively correlated in NSCLC, while the expression of KCNQ1OT1 and HMGB1 were positively correlated. Compared with normal paracancer tissues, miR-496 was much lower and HMGB1 was much higher expressed in NSCLC tissues. The results of cotransfection also further demonstrated that miR-496 inhibitor or sh-HMGB1 cotransfected with sh-KCNQ1OT1 could significantly decrease or increase the ability of sh-KCNQ1OT1 to inhibit the proliferation, invasion, and migration of H1299 cells, respectively. In conclusion, lncRNA KCNQ1OT1 promotes the invasion and migration of NSCLC cells through miR-496/HMGB1 signaling axis.
RESUMO
Bone marrow mesenchymal stromal cells (BMSCs) have a protective effect against liver cirrhosis. Long noncoding RNAs (lncRNAs) play crucial roles in the progression of liver cirrhosis. Therefore, it is aimed to clarify the lncRNA Kcnq1ot1 involved protective mechanism of BMSCs in liver cirrhosis. This study found that BMSCs treatment attenuates CCl4 -induced liver cirrhosis in mice. Additionally, the expression of lncRNA Kcnq1ot1 is upregulated in human and mouse liver cirrhosis tissues, in addition to TGF-ß1-treated LX2 cells and JS1 cells. The expression of Kcnq1ot1 in liver cirrhosis is reversed with BMSCs treatment. The knockdown of Kcnq1ot1 alleviated liver cirrhosis both in vivo and in vitro. Fluorescence in situ hybridization (FISH) confirms that Kcnq1ot1 is mainly distributed in the cytoplasm of JS1 cells. It is predicted that miR-374-3p can directly bind with lncRNA Kcnq1ot1 and Fstl1, which is verified via luciferase activity assay. The inhibition of miR-374-3p or the overexpression of Fstl1 can attenuate the effect of Kcnq1ot1 knockdown. In addition, the transcription factor Creb3l1 is upregulated during JS1 cells activation. Moreover, Creb3l1 can directly bind to the Kcnq1ot1 promoter and positively regulate its transcription. In conclusion, BMSCs alleviate liver cirrhosis by modulating the Creb3l1/lncRNA Kcnq1ot1/miR-374-3p/Fstl1 signaling pathway.
Assuntos
Proteínas Relacionadas à Folistatina , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Relacionadas à Folistatina/genética , Medula Óssea/metabolismo , Hibridização in Situ Fluorescente , Células-Tronco Mesenquimais/metabolismo , Cirrose Hepática/genéticaRESUMO
OBJECTIVE: Long non-coding RNA KQT-like subfamily, member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) could regulate lipid metabolism, vascular smooth muscle cell function, inflammation, and atherosclerosis. This study aimed to evaluate whether lncRNA KCNQ1OT1 could serve as a biomarker for reflecting coronary heart disease (CHD) patients' disease situation and prognosis. METHODS: LncRNA KCNQ1OT1 expression was determined in peripheral blood mononuclear cells from 267 CHD patients, 50 disease controls (DCs) (unexplained chest pain), and 50 healthy controls (HCs) by the RT-qPCR method. TNF-α, IL-17A, VCAM-1, and ICAM-1 were determined by the ELISA procedure in serum from CHD patients only. The mean (95% confidential interval) follow-up duration was 16.0 (15.3-16.8) months. RESULTS: LncRNA KCNQ1OT1 was highest in CHD patients, followed by DCs, and lowest in HCs (p < 0.001). LncRNA KCNQ1OT1 could distinguish the CHD patients from DCs (area under the curve [AUC]: 0.757) and from the HCs (AUC: 0.880). LncRNA KCNQ1OT1 was positively associated with triglyceride (p = 0.026), low-density lipoprotein cholesterol (p = 0.023), cardiac troponin I (p = 0.023), and C-reactive protein (p = 0.001). Besides, lncRNA KCNQ1OT1 was also positively linked with the Gensini score (p = 0.008). Furthermore, lncRNA KCNQ1OT1 was positively related to the TNF-α (p < 0.001), IL-17A (p = 0.008), and VCAM-1 (p = 0.003). LncRNA KCNQ1OT1 was elevated in CHD patients with MACE compared to those without MACE (p = 0.006); moreover, lncRNA KCNQ1OT1 high was associated with shorter MACE-free survival (p = 0.018). CONCLUSION: Circulating lncRNA KCNQ1OT1 expression not only reflects the stenosis degree, blood lipid level, and inflammation status but also predicts the MACE risk, while a large-scale study is needed for verification.
Assuntos
Doença das Coronárias , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Interleucina-17 , Constrição Patológica , Leucócitos Mononucleares/metabolismo , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular , Inflamação/genética , Lipídeos , MicroRNAs/genéticaRESUMO
Background: Lung cancer, especially lung squamous cell carcinoma (LUSC), is one of the most common malignant tumors worldwide. Currently, radiosensitization research is a vital direction for the improvement of LUSC therapy. Long non-coding RNAs (lncRNAs) can be novel biomarkers due to their multiple functions in cancers. However, the function and mechanism of lncRNA KCNQ1OT1 in the radioresistance of LUSC remain to be elucidated. Methods: The clonogenic assay was employed to determine the radioresistance of SK-MES-1R and NCI-H226R cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were conducted for the detection of gene expression. Cell proliferation was determined by the methyl thiazolyl tetrazolium (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) staining, and cell apoptosis was assessed by flow cytometry. The relationships between genes were also evaluated by applying the luciferase reporter and radioimmunoprecipitation (RIP) assays. Results: Radioresistant LUSC cells (SK-MES-1R and NCI-H226R) had strong resistance to X-ray irradiation, and lncRNA KCNQ1OT1 was highly expressed in SK-MES-1R and NCI-H226R cells. Moreover, knockdown of lncRNA KCNQ1OT1 prominently suppressed proliferation, attenuated radioresistance, and accelerated the apoptosis of SK-MES-1R and NCI-H226R cells. More importantly, we verified that miR-491-5p was a regulatory target of lncRNA KCNQ1OT1, and Xenopus kinesin-like protein 2 (TPX2) and RING finger protein 2 (RNF2) were the target genes of miR-491-5p. The rescue experiment results also demonstrated that miR-491-5p was involved in the inhibition of cell proliferation and the downregulation of TPX2 and RNF2 expression mediated by lncRNA KCNQ1OT1 knockdown in SK-MES-1R and NCI-H226R cells. Conclusions: LncRNA KCNQ1OT1 was associated with the radioresistance of radioresistant LUSC cells, and the lncRNA KCNQ1OT1/miR-491-5p/TPX2-RNF2 axis might be used as a therapeutic target to enhance the radiosensitivity of radioresistant LUSC cells.
RESUMO
BACKGROUND: Ovarian cancer (OC) is one of the most common gynecological malignancies with a high incidence. Researches showed that lncRNA KCNQ1OT1 (KCNQ1OT1) was involved various tumors progression, including OC. However, the precise mechanism of KCNQ1OT1 in OC needs to be further clarified. OBJECTIVE: For investigate the underlying mechanism of KCNQ1OT1 regulating OC progression. METHODS: CCK-8 assay, colony formation assay, Transwell assay, Western blot and quantitative real-time PCR (qRT-PCR) were performed to examine viability, proliferation, migration and invasion, genes and proteins' level. To identify KCNQ1OT1 as a regulator of miR-125b-5p and miR-125b-5p as a regulator of CD147, we used miRNA target prediction algorithms, Pearson's correlation analysis and dual-luciferase reporter gene assay. RESULTS: KCNQ1OT1 was high expression and miR-125b-5p was low expression in OC, and KCNQ1OT1 was negatively correlated with that of miR-125b-5p in OC specimens. KCNQ1OT1 promoted OC cell proliferation and metastasis by binding to miR-125b-5p. miR-125b-5p targeted CD147, and which was negatively correlated with that of miR-125b-5p in OC specimens. KCNQ1OT1 was positively correlated with that of CD147 in OC specimens, and KCNQ1OT1 accelerated OC progression via miR-125b-5p/CD147 axis. CONCLUSION: KCNQ1OT1 accelerated OC progression via miR-125b-5p/CD147 axis indicating KCNQ1OT1 serve as a novel biomarker for OC treatment. Our research provides a new direction for OC treatment.
Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do OvárioRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as regulators of human malignancies, including ovarian cancer (OC). LncRNA KCNQ1OT1 could promote OC progression, and EIF2B5 was associated with development of several tumors. This project was aimed to explore the role of lncRNA KCNQ1OT1 in OC development, as well as the involving action mechanism. METHODS: Reverse transcription quantitative polymerase chain reaction (RT-qPCR) or Western blotting was employed to determine the expression levels of KCNQ1OT1 and EIF2B5. OC cell proliferation was evaluated by MTT and colony formation assays, and wound healing and Transwell assays were implemented to monitor cell migration and invasion, respectively. The methylation status of EIF2B5 promoter was examined by MS-PCR, to clarify whether the expression of EIF2B5 was decreased. The binding activity of KCNQ1OT1 to methyltransferases DNMT1, DNMT3A and DNMT3B was determined by dual luciferase reporter assay or RIP assay, to explore the potential of KCNQ1OT1 alters the expression of its downstream gene. ChIP assay was carried out to verify the combination between EIF2B5 promoter and above three methyltransferases. RESULTS: Expression of lncRNA KCNQ1OT1 was increased in OC tissues and cells. EIF2B5 expression was downregulated in OC, which was inversely correlated with KCNQ1OT1. Knockdown of KCNQ1OT1 inhibited OC cell proliferation and metastasis. KCNQ1OT1 could downregulate EIF2B5 expression by recruiting DNA methyltransferases into EIF2B5 promoter. Furthermore, interference of EIF2B5 expression rescued KCNQ1OT1 depletion-induced inhibitory impact on OC cell proliferation and metastasis. CONCLUSION: Our findings evidenced that lncRNA KCNQ1OT1 aggravated ovarian cancer metastasis by decreasing EIF2B5 expression level, and provided a novel therapeutic strategy for OC.
Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Carcinoma Epitelial do Ovário , Fator de Iniciação 2B em Eucariotos/metabolismo , Feminino , Humanos , Metilação , Metiltransferases/metabolismo , MicroRNAs/genética , Processos Neoplásicos , Neoplasias Ovarianas/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
It has been reported that long noncoding RNA (lncRNA) KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) played an important role in myocardial infarction (MI). However, the regulatory network behind KCNQ1OT1 in MI is largely unknown. Quantitative real time polymerase chain reaction (qRT-PCR) was applied to detect the enrichment of KCNQ1OT1, microRNA-130a-3p (miR-130a-3p) and zinc finger 791 (ZNF791). The viability and apoptosis of AC16 cells were measured by (4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was conducted to assess the inflammation and oxidative stress status of AC16 cells. The targeted relationship between miR-130a-3p and KCNQ1OT1 or ZNF791 was predicted by StarBase bioinformatic database, and dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were carried out to verify these predictions. Hydrogen peroxide (H2 O2 ) stimulation caused a significant upregulation in the expression of KCNQ1OT1, while the level of miR-130a-3p showed an opposite phenomenon. KCNQ1OT1 was a crucial downstream component in H2 O2 -mediated toxic effects, and KCNQ1OT1 accelerated H2 O2 -induced toxic effects in AC16 cells. KCNQ1OT1 could sponge miR-130a-3p and down-regulate its expression. MiR-130a-3p exerted opposite effects to KCNQ1OT1, and the depletion of miR-130a-3p attenuated the protective effects of KCNQ1OT1 intervention on AC16 cells exposed to H2 O2 . MiR-130a-3p could bind to ZNF791, and ZNF791 served as the target of miR-130a-3p to promote H2 O2 -induced injury of AC16 cells. ZNF791 was modulated by KCNQ1OT1/miR-130a-3p signaling in H2 O2 -treated AC16 cells. In all, lncRNA KCNQ1OT1 deteriorated H2 O2 -mediated injury in cardiomyocytes through upregulating ZNF791 via serving as a molecular sponge for miR-130a-3p.
Assuntos
MicroRNAs , Infarto do Miocárdio , Proteínas Nucleares , RNA Longo não Codificante , Humanos , Apoptose/genética , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dedos de Zinco , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMO
LncRNA have been increasingly shown that plays pivotal roles in the development of various diseases, including renal fibrosis. Nevertheless, the pathological function of Long non-coding RNA KCNQ1OT1 (KCNQ1OT1) in the renal fibrosis remains obscure. Unilateral ureteral obstruction (UUO) was used to induce renal fibrosis. We detected the expression levels of KCNQ1OT1 in the TGF-ß1-induced HK-2 cells via RT-qPCR analysis. The functions of KCNQ1OT1 on the progression of renal fibrosis were examined by CCK-8, EdU, dual-luciferase reporter, and immunofluorescence analyses. In the present study, we found that sh-KCNQ1OT1 obviously attenuated UUO-induced renal fibrosis. Moreover, production of extracellular matrix (ECM), including α-SMA and Fibronectin levels, was significantly increased in kidney and HK-2 cells after UUO or TGF-ß stimulation. Knockdown of KCNQ1OT1 inhibited cell proliferation and inhibits the α-SMA and Fibronectin expression of TGF-ß1-induced HK-2 cells. In addition, bioinformatics analysis and dual-luciferase reporter assay indicated that miR-124-3p was a target gene of KCNQ1OT1. Mechanistically, silencing miR-124-3p abolished the repressive effects of KCNQ1OT1 on TGF-ß1-induced HK-2 cells. In conclusion, KCNQ1OT1 knockdown plays an anti-fibrotic effect through promotion of miR-124-3p expression in renal fibrosis, which provides a promising therapeutic target for the treatment of renal fibrosis.
Assuntos
Nefropatias , MicroRNAs , RNA Longo não Codificante , Feminino , Fibronectinas , Fibrose , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
OBJECTIVE: To explore the expression of LncRNA KCNQ1OT1 in diabetic nephropathy (DN), and its correlation with MEK/ERK signaling pathway. METHODS: 148 patients with type 2 diabetes in our hospital were selected as research subjects, including 83 patients with simple type 2 diabetes (T2D group) and 65 patients with type 2 diabetes with DN (DN group). Another 50 non-diabetic patients were enrolled as the control group. The expressions of LncRNA KCNQ1OT1 and MEK/ERK signaling pathway related molecules in peripheral blood mononuclear cells (PBMCs) of the three groups of subjects were detected and their correlations were analyzed. In addition, 30 Wistar rats were divided into a control group, diabetes group and DN model group, and the expression of LncRNA KCNQ1OT1 and MEK/ERK signal pathway-related molecules in kidney tissue of the three groups was detected and compared. RESULTS: The relative expression of LncRNA KCNQ1OT1, MEK-5 and ERK2 in the control group was lower than that of the T2D group and DN group (P<0.05), and the relative expression of LncRNA KCNQ1OT1 in T2D group was lower than that of DN group (P<0.05). The expression of LncRNA KCNQ1OT1 was positively-correlated with MEK-5 and ERK2 (P<0.05). The relative expression of LncRNA KCNQ1OT1, MEK-5, and ERK2 in renal tissues of the DN group was higher than those in the control group and diabetes group (P<0.05). CONCLUSION: The expression of LncRNA KCNQ1OT1 in PBMCs of DN patients is abnormally increased, and may be a biomarker for the diagnosis and treatment of the disease. In addition, an abnormal increase of LncRNA KCNQ1OT1 is associated with the activation of the MEK/ERK signaling pathway.
RESUMO
Osteoporosis is a prevalent degenerative disease that is characterized by decreased bone density and strength, resulting in gradually increasing bone fragility. Osteoporosis is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) participate in the occurrence and development of osteoporosis. Herein, we explored the role of lncRNA KCNQ1OT1 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). QPCR results indicated that KCNQ1OT1 and RICTOR were down-regulated, while miR-205-5p was up-regulated in the osteoporotic patients, as compared with non-osteoporotic controls. During the osteogenic differentiation of BMSCs, the expression of KCNQ1OT1 and RICTOR was upregulated, whereas miR-205-5p was downregulated. The interaction among KCNQ1OT1, miR-205-5p and RICTOR was validated by dual luciferase reporter system. KCNQ1OT1 promoted RICTOR expression via inhibiting miR-205-5p, therefore promoting osteogenesis as demonstrated by ALP assay, alizarin red staining and the increased expression of osteogenic markers (OPN, RUNX2 and OCN). Furthermore, KCNQ1OT1 overexpression or miR-205-5p inhibition could promote ALP activity and mineralization of BMSCs, while overexpressed miR-205-5p could reverse the effects of overexpressed KCNQ1OT1, and knockdown of RICTOR could reverse the effects of miR-205-5p inhibition. In conclusion, our study illustrated that KCNQ1OT1 might inhibit miR-205-5p in BMSCs, thus upregulating the expression of RICTOR and promoting osteogenic differentiation.
Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Diferenciação Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , RNA Longo não Codificante/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Age-related cataract (ARC) is one of the most common causes of vision loss in aging people. This research analyzed the functions and mechanism of long noncoding RNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) in hydrogen peroxide (H2O2)-stimulated human lens epithelial cells (SRA01/04 cells) in ARC. SRA01/04 cells were stimulated with 200 µM H2O2 to establish oxidative damage in the ARC model. A MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry analysis were conducted to evaluate cell growth and apoptosis. The relevance between KCNQ1OT1 and microRNA (miR)-124-3p or miR-124-3p and BCL-2-like 11 (BCL2L11) was measured through Starbase and a dual luciferase reporter gene assay. The levels of KCNQ1OT1 and miR-124-3p were assessed via quantitative real-time polymerase chain reaction (qRT-PCR). We observed that KCNQ1OT1 was over-expressed and miR-124-3p was low-expressed in H2O2-stimulated SRA01/04 cells. KCNQ1OT1 interacted with miR-124-3p and negatively mediated its levels. In addition, KCNQ1OT1-siRNA reversed the effects of H2O2 on SRA01/04 cells, evidenced by enhanced cell viability, inhibited apoptotic cells, promoted Bcl-2 expression, and reduced Bax levels. Nevertheless, these observations were inverted after miR-124-3p inhibitor treatment. Likewise, miR-124-3p mimic had a protective effect on H2O2-stimulated SRA01/04 cells. Our data suggested that BCL2L11 targeted miR-124-3p directly. In summary, the data indicated that lncRNA KCNQ1OT1 down-regulation protected SRA01/04 cells from oxidative stress stimulated damage via the miR-124-3p/BCL2L11 pathway.
Assuntos
Catarata , MicroRNAs , RNA Longo não Codificante , Apoptose/genética , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Canal de Potássio KCNQ1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
It has been shown that N6-methyladenosine (m6A) modification is involved in the development of complex human diseases, especially in the development of cancer. Our research investigated the role and mechanism of the m6A modification of lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) in Laryngeal squamous cell carcinoma (LSCC) progression. Microarray analysis was used to quantitatively detect the m6A apparent transcriptional modification level of lncRNA in LSCC tissue. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), in situ hybridization (ISH) and quantitative real-time PCR (qRT-PCR) were used to examine the m6A modification and expression of KCNQ1OT1. In addition, in vivo and in vitro experiments have tested the effects of KCNQ1OT1 knockdown on the proliferation, invasion and metastasis of LSCC. Mechanically, we found the N6-methyladenosine (m6A) demethylase ALKBH5 mediates KCNQ1OT1 expression via an m6A-YTHDF2-dependent manner and KCNQ1OT1 could directly bind to HOXA9 to further regulate the proliferation, invasion and metastasis of LSCC cells. In general, our research indicates that ALKBH5-mediated m6A modification of KCNQ1OT1 triggers the development of LSCC via upregulation of HOXA9.
Assuntos
Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Humanos , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Regulação para Cima/genéticaRESUMO
Acute kidney injury (AKI) is a critical clinical disease characterized by an acute decrease in renal function. Long non-coding RNAs (LncRNAs) are important in AKI. This study aimed to explore the mechanism of lncRNA Kcnq1ot1 in AKI by sponging microRNA (miR)-204-5p as a competitive endogenous RNA (ceRNA). AKI mouse model and hypoxia/reoxygenation (H/R) model of human kidney (HK) cells were established. Kcnq1ot1 expression, cell proliferation, and apoptosis were measured. Binding relations among Kcnq1ot1, miR-204-5p, and NLRP3 were verified. Pathological changes and cell apoptosis were detected. The results showed that Kcnq1ot1 was highly expressed in the AKI model in vivo and in vitro. Kcnq1ot1 knockdown promoted cell proliferation and prevented apoptosis and inflammation. Furthermore, Kcnq1ot1 inhibited miR-204-5p expression by competitively binding to miR-204-5p in HK-2 cells. miR-204-5p targeted NLRP3 and NLRP3 overexpression averted the inhibiting effect of miR-204-5p on apoptosis and inflammation in HK-2 cells in vitro. Kcnq1ot1 knockdown in vivo promoted miR-204-5p expression, inhibited NLRP3 inflammasome activation, reduced levels of SCr, BUN, and KIM-1, and thus alleviated AKI and reduced apoptosis. In summary, silencing lncRNA Kcnq1ot1 inhibited AKI by promoting miR-204-5p and inhibiting NLRP3 inflammasome activation.
RESUMO
Literature reports that lncRNA KCNQ1OT1 is markedly up-regulated in cervical cancer (CC) tissues and cell lines, and KCNQ1OT1 can promote the proliferation and metastasis of CC cells. This current work was designed to investigate the molecular mechanism underlying the participation of KCNQ1OT1 in CC progression. Herein, RT-qPCR was utilized for determining the levels of KCNQ1OT1, miR-296-5p and HYOU1 in clinical tumor tissue specimens and CC cell lines. Then, starBase predicted the complementary binding sites of KCNQ1OT1 and miR-296-5p or miR-296-5p and HYOU1. Dual-luciferase reporter assay/RIP assay validated the interplays among KCNQ1OT1/miR-296-5p/HYOU1. In addition, CCK-8, wound healing and transwell assays were employed to assess the proliferative, migrative and invasive properties of CC cells. Moreover, nude mice xenograft model was established by subcutaneously injection with SiHa cells in order to validate the precise functions of KCNQ1OT1/miR-296-5p/HYOU1 axis in CC in vivo. Besides, Immunohistochemical staining examined Ki-67 expression in xenograft tumors and western blotting analysis detected expressions of MMP2/9 and Wnt/ß-catenin signaling pathway in CC cells and xenograft tumors. Elevated KCNQ1OT1 and HYOU1 as well as reduced miR-296-5p were observed in clinical tumor tissue specimens and CC cell lines. Results revealed that upregulation of miR-296-5p counteracted the enhancing effects of overexpressed KCNQ1OT1 on the proliferative, migrative and invasive abilities of CC cells. Additionally, HYOU1 overexpression abolished the suppressing effects of silenced KCNQ1OT1 on the malignant behaviors of CC cells and tumor growth. To conclude, KCNQ1OT1 could aggravate the malignant behaviors of CC and facilitate tumor growth through modulating miR-296-5p/HYOU1 axis.
Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , MicroRNAs/genética , Neoplasias do Colo do Útero/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Proteínas de Choque Térmico HSP70/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: This study tried to explore the mechanism of long non-coding RNA (lncRNA) KCNQ1OT1 in tumor immune escape. Methods: Gene Expression Omnibus (GEO) and microarray analysis were used to screen the differentially expressed lncRNA and microRNA (miRNA) in normal tissues and tumor tissues. Quantitative reverse transcription PCR (RT-qPCR) was used to quantify KCNQ1OT1, miR-30a-5p, ubiquitin-specific peptidase 22 (USP22), and programmed death-ligand 1 (PD-L1). The interactive relationship between KCNQ1OT1 and miR-30a-5p was verified using dual-luciferase reporter gene assay and ribonucleoprotein immunoprecipitation (RIP) assay. Cell Counting Kit (CCK)-8, clone formation, wound healing, and apoptosis are used to detect the occurrence of tumor cells after different treatments. Protein half-life and ubiquitination detection are used to study the influence of USP22 on PD-L1 ubiquitination. BALB/c mice and BALB/c nude mice are used to detect the effects of different treatments on tumor growth and immune escape in vivo. Results: The expression of lncRNA KCNQ1OT1 in tumor tissues and tumor cell-derived exosomes was significantly increased. The tumor-promoting effect of lncRNA KCNQ1OT1 was through the autocrine effect of tumor cell-derived exosomes, which mediates the miR-30a-5p/USP22 pathway to regulate the ubiquitination of PD-L1 and inhibits CD8+ T-cell response, thereby promoting colorectal cancer development. Conclusion: Tumor cell-derived exosomes' KCNQ1OT1 could regulate PD-L1 ubiquitination through miR-30a-5p/USP22 to promote colorectal cancer immune escape.