Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401964, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162112

RESUMO

Exploring efficacious low-Ir electrocatalysts for oxygen evolution reaction (OER) is crucial for large-scale application of proton exchange membrane water electrolysis (PEMWE). Herein, an efficient non-precious lanthanide-metal-doped IrO2 electrocatalyst is presented for OER catalysis by doping large-ionic-radius Nd into IrO2 crystal. The doped Nd breaks the long-ranged order structure by triggering the strain effect and thus inducing an atomic rearrangement of Nd─IrO2 involving the forming of Nd─O─Ir bonds along with an increased amount of oxygen vacancies (Ov), giving rise of a long-ranged disorder but a short-ranged order structure. The formed Nd─O─Ir bonds tailor the electronic structure of Ir, leading to a lowered d-band center that weakens intermediates absorption on Ir sites. Moreover, doping Nd triggers Nd─IrO2 to catalyze OER mainly through lattice oxygen mechanism (LOM) by activating lattice oxygen owing to abundant Ov. The optimal catalyst only requires a relatively low overpotential of 263 mV@10 mA cm-2 with a high mass activity of 216.98 A gIr -1 (at 1.53 V) (eightfold of commercial IrO2), and also shows a superior durability at 50 mA cm-2 (20 h) than commercial IrO2 (3 h) due to the oxidation-suppressing effect induced by Nd doping. This work offers insights into designing high-performance low-Ir electrocatalysts for PEMWE application.

2.
Adv Sci (Weinh) ; 10(16): e2207695, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36991522

RESUMO

Oxygen evolution reaction (OER) under acidic conditions becomes of significant importance for the practical use of a proton exchange membrane (PEM) water electrolyzer. In particular, maximizing the mass activity of iridium (Ir) is one of the maiden issues. Herein, the authors discover that the Ir-doped calcium copper titanate (CaCu3Ti4O12, CCTO) perovskite exhibits ultrahigh mass activity up to 1000 A gIr -1 for the acidic OER, which is 66 times higher than that of the benchmark catalyst, IrO2 . By substituting Ti with Ir in CCTO, metal-oxygen (M-O) covalency can be significantly increased leading to the reduced energy barrier for charge transfer. Further, highly polarizable CCTO perovskite referred to as "colossal dielectric", possesses low defect formation energy for oxygen vacancy inducing a high number of oxygen vacancies in Ir-doped CCTO (Ir-CCTO). Electron transfer occurs from the oxygen vacancies and Ti to the substituted Ir consequentially resulting in the electron-rich Ir and -deficient Ti sites. Thus, favorable adsorptions of oxygen intermediates can take place at Ti sites while the Ir ensures efficient charge supplies during OER, taking a top position of the volcano plot. Simultaneously, the introduced Ir dopants form nanoclusters at the surface of Ir-CCTO, which can boost catalytic activity for the acidic OER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA