Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407772, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872256

RESUMO

Electrocatalytic conversion of CO2 into formate is recognized an economically-viable route to upgrade CO2, but requires high overpotential to realize the high selectivity owing to high energy barrier for driving the involved proton-coupled electron transfer (PCET) processes and serious ignorance of the second PCET. Herein, we surmount the challenge through sequential regulation of the potential-determining step (PDS) over Te-doped Bi (TeBi) nanotips. Computational studies unravel the incorporation of Te heteroatoms alters the PDS from the first PCET to the second one by substantially lowering the formation barrier for *OCHO intermediate, and the high-curvature nanotips induce enhanced electric field that can steer the formation of asymmetric *HCOOH. In this scenario, the thermodynamic barrier for *OCHO and *HCOOH can be sequentially decreased, thus enabling a high formate selectivity at low overpotential. Experimentally, distinct TeBi nanostructures are obtained via controlling Te content in the precursor and TeBi nanotips achieve >90% of Faradaic efficiency for formate production over a comparatively positive potential window (-0.57 V to -1.08 V). The strong Bi-Te covalent bonds also afford a robust stability. In an optimized membrane electrode assembly device, the formate production rate at 3.2 V reaches 10.1 mmol h-1 cm-2, demonstrating great potential for practical application.

2.
J Colloid Interface Sci ; 669: 220-227, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713960

RESUMO

Zinc-air battery as one of the new generations of battery system, its theoretical specific energy is as high as 1086 Wh kg-1, specific capacity up to 820 mAh/g, and zinc has the advantages of environmental friendliness, resource abundance, low cost and good safety, so it has attracted much attention. However, due to its slow reaction kinetic process, zinc-air battery will produce a large charging overpotential usually up to 2 V, it is far beyond the theoretical voltage of 1.65 V, so reducing the overpotential of zinc-air batteries is extremely necessary, and the most common way to solve this problem is to use excellent catalyst cathode to improve the oxygen reduction and oxygen evolution kinetics of zinc-air batteries. So we developed a new photothermal assisted zinc-air battery system with Hollow carbon nanosphere@poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)@CdS(HCN@PVTC@CdS) photocathode, the pyroelectric and photocatalysis effect can effectively promote the reaction kinetics and reduce the reaction overpotential. With the pyroelectric and photocatalysis synergistic effect, the zinc-air has displayed a high discharge potential of 1.33 V and a low charging potential of 1.5 V with good cycle stability. This multi-assist technology with built-in electric and light fields paves the way for the development of high-performance zinc-air batteries and other energy storage systems.

3.
Angew Chem Int Ed Engl ; 63(29): e202405255, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682659

RESUMO

Precise regulation of the active site structure is an important means to enhance the activity and selectivity of catalysts in CO2 electroreduction. Here, we creatively introduce anionic groups, which can not only stabilize metal sites with strong coordination ability but also have rich interactions with protons at active sites to modify the electronic structure and proton transfer process of catalysts. This strategy helps to convert CO2 into fuel chemicals at low overpotentials. As a typical example, a composite catalyst, CuO/Cu-NSO4/CN, with highly dispersed Cu(II)-SO4 sites has been reported, in which CO2 electroreduction to formate occurs at a low overpotential with a high Faradaic efficiency (-0.5 V vs. RHE, FEformate=87.4 %). Pure HCOOH is produced with an energy conversion efficiency of 44.3 % at a cell voltage of 2.8 V. Theoretical modeling demonstrates that sulfate promotes CO2 transformation into a carboxyl intermediate followed by HCOOH generation, whose mechanism is significantly different from that of the traditional process via a formate intermediate for HCOOH production.

4.
ACS Appl Mater Interfaces ; 16(14): 17657-17665, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531381

RESUMO

Rechargeable sodium-carbon dioxide (Na-CO2) batteries have been proposed as a promising CO2 utilization technique, which could realize CO2 reduction and generate electricity at the same time. They suffer, however, from several daunting problems, including sluggish CO2 reduction and evolution kinetics, large polarization, and poor cycling stability. In this study, a rambutan-like Co3O4 hollow sphere catalyst with abundant oxygen vacancies was synthesized and employed as an air cathode for Na-CO2 batteries. Density functional theory calculations reveal that the abundant oxygen vacancies on Co3O4 possess superior CO2 binding capability, accelerating CO2 electroreduction, and thereby improving the discharge capacity. In addition, the oxygen vacancies also contribute to decrease the CO2 decomposition free energy barrier, which is beneficial for reducing the overpotential further and improving round-trip efficiency. Benefiting from the excellent catalytic ability of rambutan-like Co3O4 hollow spheres with abundant oxygen vacancies, the fabricated Na-CO2 batteries exhibit extraordinary electrochemical performance with a large discharge capacity of 8371.3 mA h g-1, a small overpotential of 1.53 V at a current density of 50 mA g-1, and good cycling stability over 85 cycles. These results provide new insights into the rational design of air cathode catalysts to accelerate practical applications of rechargeable Na-CO2 batteries and potentially Na-air batteries.

5.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38198190

RESUMO

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

6.
J Colloid Interface Sci ; 659: 959-973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219314

RESUMO

Bimetal atom catalysts (BACs) hold significant potential for various applications as a result of the synergistic interaction between adjacent metal atoms. This interaction leads to improved catalytic performance, while simultaneously maintaining high atomic efficiency and exceptional selectivity, similar to single atom catalysts (SACs). Bimetallic site catalysts (M2ß12) supported by ß12-borophene were developed as catalysts for electrocatalytic carbon dioxide reduction reaction (CO2RR). The research on density functional theory (DFT) demonstrates that M2ß12 exhibits exceptional stability, conductivity, and catalytic activity. Investigating the most efficient reaction pathway for CO2RR by analyzing the Gibbs free energy (ΔG) during potential determining steps (PDS) and choosing a catalyst with outstanding catalytic performance for CO2RR. The overpotential required for Fe2ß12 and Ag2ß12 to generate CO is merely 0.05 V. This implies that the conversion of CO2 to CO can be accomplished with minimal additional voltage. The overpotential values for Cu2ß12 and Ag2ß12 during the formation of HCOOH were merely 0.001 and 0.07 V, respectively. Furthermore, the Rh2ß12 catalyst exhibits a relatively low overpotential of 0.51 V for CH3OH and 0.65 V for CH4. The Fe2ß12 produces C2H4 through the *CO-*CO pathway, while Ag2ß12 generates CH3CH2OH via the *CO-*CHO coupling pathway, with remarkably low overpotentials of 0.84 and 0.60 V, respectively. The study provides valuable insights for the systematic design and screening of electrocatalysts for CO2RR that exhibit exceptional catalytic performance and selectivity.

7.
Small ; 20(7): e2306576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803924

RESUMO

The widespread acceptance of nonaqueous rechargeable metal-gas batteries, known for their remarkably high theoretical energy density, faces obstacles such as poor reversibility and low energy efficiency under high charge-discharge current densities. To tackle these challenges, a novel catalytic cathode architecture for Mg-CO2 batteries, fabricated using a one-pot electrospinning method followed by heat treatment, is presented. The resulting structure features well-dispersed molybdenum carbide nanodots embedded within interconnected carbon nanofibers, forming a 3D macroporous conducting network. This cathode design enhances the volumetric efficiency, enabling effective discharge product deposition, while also improving electrical properties and boosting catalytic activity. This enhancement results in high discharge capacities and excellent rate capabilities, while simultaneously minimizing voltage hysteresis and maximizing energy efficiency. The battery exhibits a stable cycle life of over 250 h at a current density of 200 mA g-1 with a low initial charge-discharge voltage gap of 0.72 V. Even at incredibly high current densities, reaching 1600 mA g-1 , the battery maintains exceptional performance. These findings highlight the crucial role of cathode architecture design in enhancing the performance of Mg-CO2 batteries and hold promise for improving other metal-gas batteries that involve deposition-decomposition reactions.

8.
Angew Chem Int Ed Engl ; 62(40): e202308454, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37563746

RESUMO

Metallic zinc (Zn) is considered as one of the most attractive anode materials for the post-lithium metal battery systems owing to the high theoretical capacity, low cost, and intrinsic safety. However, the Zn dendrites and parasitic side reaction impede its application. Herein, we propose a new principle of regulating p-band center of metal oxide protective coating to balance Zn adsorption energy and migration energy barrier for effective Zn deposition and stripping. Experimental results and theoretical calculations indicate that benefiting from the uniform zincophilic nucleation sites and fast Zn transport on indium tin oxide (ITO), highly stable and reversible Zn anode can be achieved. As a result, the I-Zn symmetrical cell achieves highly reversible Zn deposition/stripping with an extremely low overpotential of 9 mV and a superior lifespan over 4000 h. The Cu/I-Zn asymmetrical cell exhibits a long lifetime of over 4000 cycles with high average coulombic efficiency of 99.9 %. Furthermore, the assembled I-Zn/AC full cell exhibits an excellent lifetime for 70000 cycles with nearly 100 % capacity retention. This work provides a general strategy and new insight for the construction of efficient Zn anode protection layer.

9.
Natl Sci Rev ; 10(4): nwac248, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37180356

RESUMO

Electrochemical CO2 reduction (ECR) to high-value multi-carbon (C2+) products is critical to sustainable energy conversion, yet the high energy barrier of C-C coupling causes catalysts to suffer high overpotential and low selectivity toward specific liquid C2+ products. Here, the electronically asymmetric Cu-Cu/Cu-N-C (Cu/CuNC) interface site is found, by theoretical calculations, to enhance the adsorption of *CO intermediates and decrease the reaction barrier of C-C coupling in ECR, enabling efficient C-C coupling at low overpotential. The catalyst consisting of high-density Cu/CuNC interface sites (noted as ER-Cu/CuNC) is then accordingly designed and constructed in situ on the high-loading Cu-N-C single atomic catalysts. Systematical experiments corroborate the theoretical prediction that the ER-Cu/CuNC boosts electrocatalytic CO2-to-ethanol conversion with a Faradaic efficiency toward C2+ of 60.3% (FEethanol of 55%) at a low overpotential of -0.35 V. These findings provide new insights and an attractive approach to creating electronically asymmetric dual sites for efficient conversion of CO2 to C2+ products.

10.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677984

RESUMO

The electrochemical conversion of CO2 into value-added chemicals is a promising approach for addressing environmental and energy supply problems. In this study, electrochemical CO2 catalysis to ethanol is achieved using incorporated Cu/CuxO nanoparticles into nitrogenous porous carbon cuboids. Pyrolysis of the coordinated Cu cations with nitrogen heterocycles allowed Cu nanoparticles to detach from the coordination complex but remain dispersed throughout the porous carbon cuboids. The heterogeneous composite Cu/CuxO-PCC-0h electrocatalyst reduced CO2 to ethanol at low overpotential in 0.5 M KHCO3, exhibiting maximum ethanol faradaic efficiency of 50% at -0.5 V vs. reversible hydrogen electrode. Such electrochemical performance can be ascribed to the synergy between pyridinic nitrogen species, Cu/CuxO nanoparticles, and porous carbon morphology, together providing efficient CO2 diffusion, activation, and intermediates stabilization. This was supported by the notably high electrochemically active surface area, rich porosity, and efficient charge transfer properties.

11.
Small ; 19(15): e2206966, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36617517

RESUMO

Electrochemical reduction reaction of nitrate (NITRR) provides a sustainable route toward the green synthesis of ammonia. Nevertheless, it remains challenging to achieve high-performance electrocatalysts for NITRR especially at low overpotentials. In this work, hierarchical nanospheres consisting of polycrystalline Iridium&copper (Ir&Cu) and amorphous Cu2 O (Cux Iry Oz NS) have been fabricated. The optimal species Cu0.86 Ir0.14 Oz delivers excellent catalytic performance with a desirable NH3 yield rate (YR) up to 0.423 mmol h-1  cm-2 (or 4.8 mg h-1  mgcat -1 ) and a high NH3 Faradaic efficiency (FE) over 90% at a low overpotential of 0.69 V (or 0 VRHE ), where hydrogen evolution reaction (HER) is almost negligible. The electrolyzer toward NITRR and hydrazine oxidation (HzOR) is constructed for the first time with an electrode pair of Cu0.86 Ir0.14 Oz //Cu0.86 Ir0.14 Oz , yielding a high energy efficiency (EE) up to 87%. Density functional theory (DFT) calculations demonstrate that the dispersed Ir atom provides active site that not only promotes the NO3 - adsorption but also modulates the H adsorption/desorption to facilitate the proton supply for the hydrogenation of *N, hence boosting the NITRR. This work thus points to the importance of both morphological/structural and compositional engineering for achieving the highly efficient catalysts toward NITRR.

12.
Adv Mater ; 35(5): e2205262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36413020

RESUMO

Electrocatalytic CO2 reduction reaction (CO2 RR) offers a promising strategy to lower CO2 emission while producing value-added chemicals. A great challenge facing CO2 RR is how to improve energy efficiency by reducing overpotentials. Herein, partially nitrided Ni nanoclusters (NiNx ) immobilized on N-doped carbon nanotubes (NCNT) for CO2 RR are reported, which achieves the lowest onset overpotential of 16 mV for CO2 -to-CO and the highest cathode energy efficiency of 86.9% with CO Faraday efficiency >99.0% to date. Interestingly, NiNx /NCNT affords a CO generation rate of 43.0 mol g-1  h-1 at a low potential of -0.572 V (vs RHE). DFT calculations reveal that the NiNx nanoclusters favor *COOH formation with lower Gibbs free energy than isolated Ni single-atom, hence lowering CO2 RR overpotential. As NiNx /NCNT is applied to a membrane electrode assembly system coupled with oxygen evolution reaction, a cell voltage of only 2.13 V is required to reach 100 mA cm-2 , with total energy efficiency of 62.2%.

13.
Small ; 18(52): e2203147, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36323587

RESUMO

The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.

14.
ACS Nano ; 16(11): 19210-19219, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36255287

RESUMO

Using the electrochemical CO2 reduction reaction (CO2RR) with Cu-based electrocatalysts to achieve carbon-neutral cycles remains a significant challenge because of its low selectivity and poor stability. Modulating the surface electron distribution by defects engineering or doping can effectively improve CO2RR performance. Herein, we synthesize the electrocatalyst of Vo-CuO(Sn) nanosheets containing oxygen vacancies and Sn dopants for application in CO2RR-to-CO. Density functional theory calculations confirm that the incorporation of oxygen vacancies and Sn atoms substantially reduces the energy barrier for *COOH and *CO intermediate formation, which results in the high efficiency, low overpotential, and superior stability of the CO2RR to CO conversion. This electrocatalyst possesses a high Faraday efficiency (FE) of 99.9% for CO at a low overpotential of 420 mV and a partial current density of up to 35.22 mA cm-2 at -1.03 V versus reversible hydrogen electrode (RHE). The FECO of Vo-CuO(Sn) could retain over 95% within a wide potential area from -0.48 to -0.93 V versus RHE. Moreover, we obtain long-term stability for more than 180 h with only a slight decay in its activity. Therefore, this work provides an effective route for designing environmentally friendly electrocatalysts to improve the selectivity and stability of the CO2RR to CO conversion.

15.
Nanotechnology ; 33(44)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882215

RESUMO

The design and construction of active centres are key to exploring advanced electrocatalysts for oxygen evolution reaction (OER). In this work, we demonstrate thein situconstruction of point defects on CrOOH by Ni doping (Ni-CrOOH/NF). Compared with pure CrOOH/NF, Ni-CrOOH/NF showed enhanced OER activity. The effect of the amount of Ni introduced on the OER performance was investigated. Ni0.2-CrOOH/NF, the best introduction of Ni, uses a low overpotential of 253 mV to achieve a current density of 10 mA cm-2with a high turnover frequency of 0.27 s-1in 1.0 M NaOH. In addition, the electrocatalytic performance of Ni0.2-CrOOH/NF showed little deterioration after 1000-cycle cyclic voltammetry scanning. In the potentiostatic test, activity was stable for at least 20 h.

16.
Adv Sci (Weinh) ; 9(21): e2200454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35599159

RESUMO

Electrochemical CO2 reduction reaction can be used to produce value-added hydrocarbon fuels and chemicals by coupling with clean electrical energy. However, highly active, selective, and energy-efficient CO2 conversion to multicarbon hydrocarbons, such as C2 H4 , remains challenging because of the lack of efficient catalysts. Herein, an ultrasonication-assisted electrodeposition strategy to synthesize CuO nanosheets for low-overpotential CO2 electroreduction to C2 H4 is reported. A high C2 H4 Faradaic efficiency of 62.5% is achieved over the CuO nanosheets at a small potential of -0.52 V versus a reversible hydrogen electrode, corresponding to a record high half-cell cathodic energy efficiency of 41%. The selectivity toward C2 H4 is maintained for over 60 h of continuous operation. The CuO nanosheets are prone to in situ restructuring during CO2 reduction, forming abundant grain boundaries (GBs). Stable Cu+ /Cu0 interfaces are derived from the low-coordinated Cu atoms in the reconstructed GB regions and act as highly active sites for CO2 reduction at low overpotentials. In situ Raman spectroscopic analysis and density functional theory computation reveal that the Cu+ /Cu0 interfaces offer high *CO surface coverage and lower the activation energy barrier for *CO dimerization, which, in synergy, facilitates CO2 reduction to C2 H4 at low overpotentials.

17.
Small ; 18(24): e2201311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35561067

RESUMO

Deficiencies in understanding the local environment of active sites and limited synthetic skills challenge the delivery of industrially-relevant current densities with low overpotentials and high selectivity for CO2 reduction. Here, a transient laser induction of metal salts can stimulate extreme conditions and rapid kinetics to produce defect-rich indium nanoparticles (L-In) is reported. Atomic-resolution microscopy and X-ray absorption disclose the highly defective and undercoordinated local environment in L-In. In a flow cell, L-In shows a very small onset overpotential of ≈92 mV and delivers a current density of ≈360 mA cm-2 with a formate Faradaic efficiency of 98% at a low potential of -0.62 V versus RHE. The formation rate of formate reaches up to 6364.4 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ , which is nearly 39 folds higher than that of commercial In (160.7 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ ), outperforming most of the previous results that have been reported under KHCO3 environments. Density function theory calculations suggest that the defects facilitate the formation of *OCHO intermediate and stabilize the *HCOOH while inhibiting hydrogen adsorption. This study suggests that transient solid-state laser induction provides a facile and cost-effective approach to form ligand-free and defect-rich materials with tailored activities.


Assuntos
Índio , Lasers de Estado Sólido , Dióxido de Carbono/química , Formiatos/química
18.
ACS Appl Mater Interfaces ; 14(13): 15235-15242, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332777

RESUMO

With less energy consumption and environmental pollution, electrochemical ammonia synthesis is regarded as the most promising way to replace the industrial Haber-Bosch process, which greatly contributes to global energy consumption and CO2 emission. At present, the best metal electrocatalyst for N2 fixation is ruthenium although its performance still suffers from a low Faradaic efficiency and a high overpotential. Alloy engineering is a promising way to discover more metal-based electrocatalysts for dinitrogen reduction reaction (N2RR), and almost all reported alloy catalysts so far are binary alloys. In this work, we proposed a large group of ternary alloy electrocatalysts (Heusler alloys) for N2RR and demonstrated their superior catalytic performance. As an example, alloying Ru with Mn and Si led to a reduced Ru-Ru distance on the surface, which facilitates an uncommon horizontal adsorption mode of N2 and results in effective activation of N2 molecules. The theoretical overpotential of N2RR on Ru2MnSi(100-Ru) is only around 0.28 V, which ranks among the best reported results, and the usage of precious Ru is greatly reduced. Meanwhile, the adsorption of N2 on Ru2MnSi(100-Ru) was much stronger than that of protons, and it also took less energy to drive N2RR than the hydrogen evolution reaction (HER), making HER less competitive on this catalyst. Considering the successful synthesis of numerous Heusler alloys including the six members mentioned here, our work provided a wider range of practical and excellent N2RR electrocatalysts in terms of both catalytic performance and economical cost.

19.
Nano Lett ; 21(22): 9580-9586, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762433

RESUMO

Defect engineering has become one of the important considerations in today's electrocatalyst design. However, the vacancies in the ordered crystal structure (especially body-centered cubic (bcc) and the effect of ordered vacancies (OVs) on the electronic fabric have not been researched yet. In this work, we report the inaugural time of the generation of OVs in the bcc architecture and discuss the insight of the modulation system of the material and its part in the electrochemical N2 reduction reaction (NRR). OV-PdCu-2 achieves the highest Faradaic efficiency value of 21.5% at 0.05 V versus RHE. When the potential increases to 0 V versus RHE, the highest ammonia yield is 55.54 µg h-1 mgcat-1, which is significantly better than the unetched PdCu nanoparticles (12.83 µg h-1 mgcat-1). It is the latest reported catalyst to date in the NRR process at 0 V versus RHE (see Supporting Information).

20.
ACS Appl Mater Interfaces ; 13(31): 37044-37051, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328308

RESUMO

In nonaqueous Mg batteries, inactive adsorbed species and the passivation layer formed from the reactive Mg with impurities in the electrolyte seriously affect the Mg metal/electrolyte interface. These adlayers can impede the passage of Mg2+ ions, leading to a high Mg plating/stripping overpotential. Herein, we report the properties of a new additive, bismuth triflate (Bi(OTf)3), for synthesizing a chlorine-free Mg electrolyte to enhance Mg plating/stripping from initial cycles. The beneficial effect of Bi(OTf)3 can be ascribed to Bi/Mg3Bi2 formed in situ on the Mg metal surface, which increases the charge transfer during the on-off transition by reducing the adsorption of inactive species on the Mg surface and enhancing the resistance of the reactive surface to passivation. This simple method provides a new avenue to improve the compatibility between the Cl-free Mg electrolyte and the Mg metal anode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA