Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Medicines (Basel) ; 11(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38392693

RESUMO

Background: Cancer therapeutics have a low success rate in clinical trials. An interdisciplinary approach is needed to translate basic, clinical, and remote fields of research knowledge into novel cancer treatments. Recent research has identified high dietary phosphate intake as a risk factor associated with cancer incidence. A model of tumor dynamics predicted that reducing phosphate levels sequestered in the tumor microenvironment could substantially reduce tumor size. Coincidently, a low-phosphate diet is already in use to help patients with chronic kidney disease manage high serum phosphate levels. Methods: A grounded-theory literature-review method was used to synthesize interdisciplinary findings from the basic and clinical sciences, including oncology, nephrology, nutritional epidemiology, and dietetic research on cancer. Results: Findings of tumor remission associated with fasting and a ketogenic diet, which lower intake of dietary phosphate, support the hypothesis that a low-phosphate diet will reduce levels of phosphate sequestered in the tumor microenvironment and reduce tumor size. Additionally, long-term effects of a low-phosphate diet may reverse dysregulated phosphate metabolism associated with tumorigenesis and prevent cancer recurrence. Conclusions: Evidence in this article provides the rationale to test a low-phosphate diet as a dietary intervention to reduce tumor size and lower risk of cancer recurrence.

2.
Plant Cell Physiol ; 65(1): 20-34, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37758243

RESUMO

Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Environ ; 47(3): 799-816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111215

RESUMO

Phosphorus (P) is a crucial macronutrient for plant growth, development, and reproduction. The effects of low P (LP) stress on leaf senescence and the role of PHR1 in LP-induced leaf senescence are still unknown. Here, we report that PHR1 plays a crucial role in LP-induced leaf senescence, showing delayed leaf senescence in phr1 mutant and accelerated leaf senescence in 35S:PHR1 transgenic Arabidopsis under LP stress. The transcriptional profiles indicate that 763 differentially expressed SAGs (DE-SAGs) were upregulated and 134 DE-SAGs were downregulated by LP stress. Of the 405 DE-SAGs regulated by PHR1, 27 DE-SAGs were involved in P metabolism and transport. PHR1 could bind to the promoters of six DE-SAGs (RNS1, PAP17, SAG113, NPC5, PLDζ2, and Pht1;5), and modulate them in LP-induced senescing leaves. The analysis of RNA content, phospholipase activity, acid phosphatase activity, total P and phosphate content also revealed that PHR1 promotes P liberation from senescing leaves and transport to young tissues under LP stress. Our results indicated that PHR1 is one of the crucial modulators for P recycling and redistribution under LP stress, and the drastic decline of P level is at least one of the causes of early senescence in P-deficient leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
5.
Plant Physiol Biochem ; 202: 107979, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37643556

RESUMO

Ramie (Boehmeria nivea L.) is a highly valued fiber crop. Its yield is often limited by lack of available phosphate (Pi) in the soil, but the underlying molecular mechanisms of ramie's response to Pi deficiency remain largely unknown. To investigate how ramie adapts to low Pi stress, we selected a low Pi-tolerant variety (H-5) and a low Pi-sensitive variety (XYL), and conducted a biochemical and transcriptomic analysis on roots and leaves of both varieties. After subjecting the plants to Pi-deficient and Pi-sufficient conditions for 15 days, we found that H-5 exhibited higher dry weight, longer root systems, and higher levels of Pi, galactolipids, and organic acids when subjected to Pi deprivation, compared to XYL. Transcriptomic analysis further revealed that Pi-responsive genes involved in lipid metabolism, Pi transport, organic acid synthesis, and acid phosphatase activities were more induced in the tolerant variety H-5. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five hub genes, including phosphate transporter, SPX domain-containing protein and sulfoquinovosyl transferase, which played key roles in low Pi tolerance in ramie. The present study will broaden our comprehension of the differences and molecular mechanisms of different ramie cultivars in response to Pi starvation, and lay a foundation for future agronomic improvements in ramie and other fiber crops.


Assuntos
Boehmeria , Fosfatos , Transcriptoma/genética , Agricultura , Produtos Agrícolas
6.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446294

RESUMO

Phosphorus is an essential macronutrient for plant growth and development, but phosphate resources are limited and rapidly depleting due to massive global agricultural demand. This study identified two genes in the phosphate transporter 2 (PHT2) family of soybean by bioinformatics. The expression patterns of two genes by qRT-PCR at leaves and all were induced by low-phosphate stress. After low-phosphate stress, GmPHT2;2 expression was significantly higher than GmPHT2;1, and the same trend was observed throughout the reproductive period. The result of heterologous expression of GmPHT2 in Arabidopsis knockout mutants of atpht2;1 shows that chloroplasts and whole-plant phosphorus content were significantly higher in plants complementation of GmPHT2;2 than in plants complementation of GmPHT2;1. This suggests that GmPHT2;2 may play a more important role in plant phosphorus metabolic homeostasis during low-phosphate stress than GmPHT2;1. In the yeast backfill assay, both genes were able to backfill the ability of the defective yeast to utilize phosphorus. GmPHT2 expression was up-regulated by a low-temperature treatment at 4 °C, implying that GmPHT2;1 may play a role in soybean response to low-temperature stress, in addition to being involved in phosphorus transport processes. GmPHT2;1 and GmPHT2;2 exhibit a cyclic pattern of circadian variation in response to light, with the same pattern of gene expression changes under red, blue, and white light conditions. GmPHT2 protein was found in the chloroplast, according to subcellular localization analysis. We conclude that GmPHT2 is a typical phosphate transporter gene that can improve plant acquisition efficiency.


Assuntos
Arabidopsis , Proteínas de Transporte de Fosfato , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Glycine max/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo
7.
Plant Physiol Biochem ; 200: 107801, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269822

RESUMO

Phosphate (Pi) deficiency is a common stress that limits plant growth and development. Plants exhibit a variety of Pi starvation responses (PSRs), including anthocyanin accumulation. The transcription factors of the PHOSPHATE STARVATION RESPONSE (PHR) family, such as AtPHR1 in Arabidopsis, play central roles in the regulation of Pi starvation signaling. Solanum lycopersicum PHR1-like 1 (SlPHL1) is a recently identified PHR involved in PSR regulation in tomato, but the detailed mechanism of its participation in Pi starvation-inducing anthocyanin accumulation remains unclear. Here we found that overexpression of SlPHL1 in tomato increases the expression of genes associated with anthocyanin biosynthesis, thereby promoting anthocyanin biosynthesis, but silencing SlPHL1 with Virus Induced Gene Silencing (VIGS) attenuated low phosphate (LP) stress-induced anthocyanin accumulation and expression of the biosynthesis-related genes. Notably, SlPHL1 is able to bind the promoters of genes Flavanone 3-Hydroxylase (SlF3H), Flavanone 3'-Hydroxylase (SlF3'H), and Leucoanthocyanidin Dioxygenase (SlLDOX) by yeast one-hybrid (Y1H) analysis. Furthermore, Electrophoretic Mobility Shift Assay (EMSA) and transient transcript expression assay showed that PHR1 binding t (sequence (P1BS) motifs located on the promoters of these three genes are critical for SlPHL1 binding and enhancing the gene transcription. Additionally, allogenic overexpression of SlPHL1 could promote anthocyanin biosynthesis in Arabidopsis under LP conditions through the similar mechanism to AtPHR1, suggesting that SlPHL1 might be functionally conserved with AtPHR1 in this process. Taken together, SlPHL1 positively regulates LP-induced anthocyanin accumulation by directly promoting the transcription of SlF3H, SlF3'H and SlLDOX. These findings will contribute to understanding the molecular mechanism of PSR in tomato.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Solanum lycopersicum/genética , Antocianinas/metabolismo , Regulação para Cima , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
8.
Gene ; 872: 147458, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141953

RESUMO

Plants are sessile and encounter to abiotic environmental stressors, such as nutrient deficiency and drought stress. Identifying stress tolerance genes and their mechanisms is vital to ensuring plant survival. In this study, we characterized NCED3 in the tobacco plant Nicotiana tabacum, a key enzyme in the biosynthesis of abscisic acid that is widely involved in abiotic stress responses, using overexpression and RNA interference knockdown. Overexpression of NtNCED3 promoted primary root development, leading to increased dry weight, root-to-shoot ratio, photosynthetic capacity, and acid phosphatase activity, coinciding with highly increased phosphate uptake capability under low phosphate conditions. Under both drought and extreme phosphate deficiency conditions, the phosphate starvation response preceded the drought stress response. However, under high phosphate conditions, the drought stress phenotype emerged before the symptoms of phosphate deficiency. Plants overexpressing NtNCED3 grew better than the wild-type and NtNCED3 knockdown plants, with more developed root systems and higher biomass, phosphorus content, and hormone content. This study provides evidence that NtNCED3 enzyme participates in plant responses to phosphate deficiency and drought stress in N. tabacum, and NtNCED3 may serve as a potentially valuable gene for genetic modification of plant tolerance to both drought stress and phosphate starvation.


Assuntos
Nicotiana , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Ácido Abscísico , Fosfatos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
9.
Int J Biol Macromol ; 241: 124569, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100319

RESUMO

Stylo (Stylosanthes guianensis) is a tropical forage and cover crop that possesses low phosphate (Pi) tolerance traits. However, the mechanisms underlying its tolerance to low-Pi stress, particularly the role of root exudates, remain unclear. This study employed an integrated approach using physiological, biochemical, multi-omics, and gene function analyses to investigate the role of stylo root exudates in response to low-Pi stress. Widely targeted metabolomic analysis revealed that eight organic acids and one amino acid (L-cysteine) were significantly increased in the root exudates of Pi-deficient seedlings, among which tartaric acid and L-cysteine had strong abilities to dissolve insoluble-P. Furthermore, flavonoid-targeted metabolomic analysis identified 18 flavonoids that were significantly increased in root exudates under low-Pi conditions, mainly belonging to the isoflavonoid and flavanone subclasses. Additionally, transcriptomic analysis revealed that 15 genes encoding purple acid phosphatases (PAPs) had upregulated expression in roots under low-Pi conditions. Among them, SgPAP10 was characterized as a root-secreted phosphatase, and overexpression of SgPAP10 enhanced organic-P utilization by transgenic Arabidopsis. Overall, these findings provide detailed information regarding the importance of stylo root exudates in adaptation to low-Pi stress, highlighting the plant's ability to release Pi from organic-P and insoluble-P sources through root-secreted organic acids, amino acids, flavonoids, and PAPs.


Assuntos
Arabidopsis , Fabaceae , Fósforo/metabolismo , Cisteína/metabolismo , Multiômica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Exsudatos e Transudatos
10.
Sci Total Environ ; 815: 152678, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973331

RESUMO

Biofilm sequencing batch reactor (BSBR) can achieve efficient phosphate (P) removal and enrichment, but its process performance and metabolic mechanisms for P removal and enrichment of municipal wastewater remain largely unclear. In the present study, we assessed the P removal and enrichment of municipal wastewater at influent P concentrations of 2.5 mg/L and 10 mg/L. The efficiency of P removal and enzyme activity in polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) were compared, and the growth and metabolic characteristics of dominant PAOs and GAOs at different influent P concentrations were studied with the macro-sequencing technology. The results showed that the P recovery efficiencies were 70.03% and 76.19% when the influent P concentration was 2.5 mg/L and 10 mg/L in BSBR, respectively, and the maximum P concentration of recovery liquid was 81.29 mg/L and 173.12 mg/L, respectively. There were no phosphate kinase (PPK) and phosphate hydrolase (PPX) in extracellular polymeric substances (EPS). The dominant PAOs were Candidatus_Contendobacter, Dechloromonas, and Flavobacterium, and the dominant GAO was Candidatus_Competibacter. The abundance of Candidatus_Contendobacter was the highest with the most potential contribution to P removal. PAOs had competitive advantages in carbon (C) source uptake, glycogen metabolism, P metabolism, and adenosine triphosphate (ATP) metabolism. HMP was unique to PAOs, EMP had the highest abundance in glycogen metabolism, and ED was contained in PAOs of BSBR. These results indicated that BSBR provided sufficient reducing power and ATP for PAOs through different glycogen decomposition pathways to promote P uptake and obtained competitive advantages in P metabolism, C source uptake, and ATP utilization to achieve efficient P removal and enrichment. Collectively, our current findings provided valuable insights into the P removal and enrichment mechanism of BSBR in municipal sewage.


Assuntos
Reatores Biológicos , Glicogênio , Biofilmes , Fósforo , Polifosfatos
11.
Front Plant Sci ; 12: 698443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322147

RESUMO

The C2H2-type zinc finger transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) plays a critical role in aluminum (Al) resistance and low phosphate (Pi) response mainly through promoting the expression of the malate transporter-encoding gene ARABIDOPSIS THALIANA ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (AtALMT1). We previously showed that REGULATION OF ATALMT1 EXPRESSION 3 (RAE3/HPR1), a core component of the THO/TREX complex, is involved in the regulation of nucleocytoplasmic STOP1 mRNA export to modulate Al resistance and low Pi response. Here, we report that RAE2/TEX1, another core component of the THO complex, is also involved in the regulation of Al resistance and low Pi response. Mutation of RAE2 reduced the expression of STOP1-downstream genes, including AtALMT1. rae2 was less sensitive to Al than rae3, which was consistent with less amount of malate secreted from rae3 roots than from rae2 roots. Nevertheless, low Pi response was impaired more in rae2 than in rae3, suggesting that RAE2 also regulates AtALMT1-independent pathway to modulate low Pi response. Furthermore, unlike RAE3 that regulates STOP1 mRNA export, mutating RAE2 did not affect STOP1 mRNA accumulation in the nucleus, although STOP1 protein level was reduced in rae2. Introduction of rae1 mutation into rae2 mutant background could partially recover the deficient phenotypes of rae2. Together, our results demonstrate that RAE2 and RAE3 play overlapping but distinct roles in the modulation of Al resistance and low Pi response.

12.
Plant Signal Behav ; 16(5): 1899487, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715572

RESUMO

The zinc finger transcription factor STOP1 plays a crucial role in aluminum (Al) resistance and low phosphate (Pi) response. Al stress and low Pi availability do not affect STOP1 mRNA expression but are able to induce STOP1 protein accumulation by post-transcriptional regulatory mechanisms. We recently reported that STOP1 can be mono-SUMOylated at K40, K212, or K395 sites, and deSUMOylated by the SUMO protease ESD4. SUMOylation of STOP1 is important for the regulation of STOP1 protein function and Al resistance. In the present study, we further characterized the role of the SUMO E3 ligase SIZ1 in STOP1 SUMOylation, Al resistance and low Pi response. We found that mutation of SIZ1 reduced but not eliminated STOP1 SUMOylation, suggesting that SIZ1-dependent and -independent pathways are involved in the regulation of STOP1 SUMOylation. The STOP1 protein levels were decreased in siz1 mutants. Nevertheless, the expression of STOP1-target gene AtALMT1 was increased instead of reduced in siz1 mutants. The mutants showed enhanced Al resistance and low Pi response. Our results suggest that SIZ1 regulates Al resistance and low Pi response likely through the modulation of AtALMT1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ligases/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ligases/genética , Mutação/genética , Fósforo/farmacologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Sumoilação/efeitos dos fármacos
13.
Plant J ; 106(2): 493-506, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528836

RESUMO

The C2H2-type zinc finger transcription factor sensitive to proton rhizotoxicity 1 (STOP1) is crucial for aluminum (Al) resistance in Arabidopsis. The F-box protein Regulation of AtALMT1 Expression 1 (RAE1) was recently reported to regulate the stability of STOP1. There is a unique homolog of RAE1, RAH1 (RAE1 homolog 1), in Arabidopsis, but the biological function of RAH1 is still not known. In this study, we characterize the role of RAH1 and/or RAE1 in the regulation of Al resistance and plant growth. We demonstrate that RAH1 can directly interact with STOP1 and promote its ubiquitination and degradation. RAH1 is preferentially expressed in root caps and various vascular tissues, and its expression is induced by Al and controlled by STOP1. Mutation of RAH1 in rae1 but not the wild-type (WT) background increases the level of STOP1 protein, leading to increased expression of STOP1-regulated genes and enhanced Al resistance. Interestingly, the rah1rae1 double mutant shows reduced plant growth compared with the WT and single mutants under normal conditions, and introduction of stop1 mutation into the double mutant background can rescue its reduced plant growth phenotype. Our results thus reveal that RAH1 plays an unequally redundant role with RAE1 in the modulation of STOP1 stability and plant growth, and dynamic regulation of the STOP1 level is critical for the balance of Al resistance and normal plant growth.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas F-Box/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas F-Box/fisiologia , Regulação da Expressão Gênica de Plantas , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Estresse Fisiológico , Fatores de Transcrição/fisiologia , Ubiquitinação
14.
Plant Sci ; 297: 110526, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563464

RESUMO

The accumulation of iron (Fe) in the apical meristem is considered as a critical factor involved in limiting the elongation of roots under low phosphate (Pi) conditions. Furthermore, the antagonism between Fe and Pi largely affects the effective utilization of Fe. Although the lack of Pi serves to increase the effectiveness of Fe in rice under both Fe-sufficient and Fe-deficient conditions, the underlying physiological mechanism governing this phenomenon is still unclear. In this study, we found that low Pi alleviated the Fe-deficiency phenotype in apples. Additionally, low Pi treatments increased ferric-chelated reductase (FCR) activity in the rhizosphere, promoted proton exocytosis, and enhanced the Fe concentration in both the roots and shoots. In contrast, high Pi treatments inhibited this process. Under conditions of low Pi, malate and citrate exudation from apple roots occurred under both Fe-sufficient and Fe-deficient conditions. In addition, treatment with 0.5 mM malate and citrate effectively alleviated the Fe and Pi deficiencies. Taken together, these data support the conclusion that a low Pi supply promotes organic acids exudation and enhances Fe absorption during Fe deficiency in apples.


Assuntos
Ácido Cítrico/metabolismo , Ferro/metabolismo , Malatos/metabolismo , Malus/metabolismo , Fosfatos/metabolismo , Antocianinas/metabolismo , Clorofila/metabolismo , Perfilação da Expressão Gênica , Deficiências de Ferro , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rizosfera , Transcriptoma
15.
Front Plant Sci ; 11: 620377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613589

RESUMO

Phosphorus is one of the essential macronutrients required by plant growth and development, but phosphate resources are finite and diminishing rapidly because of the huge need in global agriculture. In this study, 11 genes were found in the Phosphate Transporter 1 (PHT1) family of Medicago truncatula. Seven genes of the PHT1 family were available by qRT-PCR. Most of them were expressed in roots, and almost all genes were induced by low-phosphate stress in the nodule. The expression of MtPT6 was relatively high in nodules and induced by low-phosphate stress. The fusion expression of MtPT6 promoter-GUS gene in M. truncatula suggested that the expression of MtPT6 was induced in roots and nodules by phosphate starvation. In roots, MtPT6 was mainly expressed in vascular tissue and tips, and it was also expressed in cortex under low-phosphate stress; in nodules, it was mainly expressed in vascular bundles, cortical cells, and fixation zone cells. MtPT6 had a close relationship with other PHT1 family members according to amino acid alignment and phylogenetic analysis. Subcellular localization analysis in tobacco revealed that MtPT6 protein was localized to the plasma membrane. The heterologous expression of MtPT6 in Arabidopsis knockout mutants of pht1.1 and pht1.4 made seedlings more susceptible to arsenate treatment, and the phosphate concentrations in pht1.1 were higher in high phosphate condition by expressing MtPT6. We conclude that MtPT6 is a typical phosphate transporter gene and can promote phosphate acquisition efficiency of plants.

16.
Biomolecules ; 9(11)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671617

RESUMO

The phosphate transporter (PHT) family mediates the uptake and translocation of the essential macronutrient phosphorus (P) in plants. In this study, 27 PHT proteins in Sorghum were identified via bioinformatics tools. Phylogenetic analysis of their protein sequences in comparison with those family proteins from Arabidopsis and rice indicated that these proteins could be clustered into five typical subfamilies. There are 12 SbPHT1 members, one SbPHT2, six SbPHT3s, six SbPHT4s, and two SbPHOs in Sorghum. Further analysis of the gene structure, conserved motifs, subcellular localization, and transmembrane domains suggested that these features are relatively conserved within each subfamily. Meanwhile, the qRT-PCR assay implied that SbPHT1;2, SbPHT1;11, and SbPHT4;6 were significantly upregulated in roots when exposed to low-phosphate conditions, suggesting that these genes might be involved in P uptake in low-phosphate conditions. Our study will increase our understanding of the roles of phosphate transporters in Sorghum.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Sequência Conservada , Espaço Intracelular/metabolismo , Motivos de Nucleotídeos , Filogenia , Transporte Proteico , Alinhamento de Sequência
17.
Plant Sci ; 283: 177-188, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128687

RESUMO

Phytohormone signaling is involved in the low-phosphate (LP) response and causes root system changes. To understand the roles of auxin and gibberellic acid (GA) in the maize response to LP stress, inbred line Q319 was used to identify the changes in root morphology and the gene expression response to LP stress with or without exogenous auxin, GA or their inhibitors. The root morphology, IAA and GAs concentration and genes related to the LP response, cell elongation and division, auxin transport and signaling, and GA synthesis and signaling were analyzed. The LP-induced maize root morphological adaption was dependent on changes in the expression of related genes, like IPS1, pht1;1 LPR1b, KRPs, and EXPB1-4. The altered local auxin concentration and signaling were involved in promoting axial root elongation and reducing lateral root density and length under LP conditions, which were regulated by PID and PP2A activity and the auxin signaling pathway. The upregulation of the GA synthesis genes AN1, GA20ox1, and GA20ox2 and the downregulation of the GA inactive genes GA2ox1 and GA2ox2 were observed in maize roots subjected to LP stress, and the increased GA biosynthesis and signaling were involved in root growth. Both hormones participate in LP stress response and jointly regulated root modification and LP acclimation in maize.


Assuntos
Giberelinas/fisiologia , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Reguladores de Crescimento de Plantas/fisiologia , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico , Zea mays/anatomia & histologia , Zea mays/fisiologia
18.
Int J Phytoremediation ; 21(7): 617-623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873857

RESUMO

Arsenic contamination of groundwater is a significant problem in countries like Mexico, where San Luis Potosi is among the regions registering severe levels of it. Bioremediation with microalgae capable to absorb and metabolize metals or metalloids like arsenic reduces their toxicity and is a cost-effective approach compared to physical-chemical processes. We evaluated the capability of Chlamydomonas reinhardtii to remove arsenate and compared it with an acr3-modified recombinant strain, which we produced by transforming the wild-type strain with Agrobacterium tumefaciens using the construct pARR1 including a synthetic, optimized acr3 gene from Pteris vittata, a hyper-accumulator of arsenic. We monitored the growth of both strains in media with arsenate, containing a standard or a 10-fold decreased amount of phosphate. Comparing both strains in media initially with 0.5, 1, and 1.5 mg/L of arsenate, the acr3-modified strain removed 1.5 to 3 times more arsenic than the wild-type strain. Moreover, the arsenic uptake rate increased 1.2 to 2.3 times when growing the acr3-modified strain in media with decreased phosphate, while the uptake rate for the wild-type strain scarcely changed under the same conditions. These results confirm the expression of the acr3 gene in C. reinhardtii and its potential application to remove arsenic.


Assuntos
Arsênio , Chlamydomonas reinhardtii , Pteris , Biodegradação Ambiental , México , Fosfatos
19.
Proc Natl Acad Sci U S A ; 116(1): 319-327, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559192

RESUMO

Aluminum (Al) toxicity is a major factor limiting crop production on acid soils, which represent over 30% of the world's arable land. Some plants have evolved mechanisms to detoxify Al. Arabidopsis, for example, secretes malate via the AtALMT1 transporter to chelate and detoxify Al. The C2H2-type transcription factor STOP1 plays a crucial role in Al resistance by inducing the expression of a set of genes, including AtALMT1 Here, we identify and characterize an F-box protein-encoding gene regulation of Atalmt1 expression 1 (RAE1) that regulates the level of STOP1. Mutation and overexpression of RAE1 increases or decreases the expression of AtALMT1 and other STOP1-regulated genes, respectively. RAE1 interacts with and promotes the degradation of STOP1 via the ubiquitin-26S proteasome pathway, while Al stress promotes the accumulation of STOP1. We find that STOP1 up-regulates RAE1 expression by directly binding to the RAE1 promoter, thus forming a negative feedback loop between STOP1 and RAE1. Our results demonstrate that RAE1 influences Al resistance through the ubiquitination and degradation of STOP1.


Assuntos
Proteínas de Arabidopsis/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Fatores de Transcrição/metabolismo , Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
20.
Dev Cell ; 46(1): 59-72.e4, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29974864

RESUMO

Plants acquire essential elements from inherently heterogeneous soils, in which phosphate and iron availabilities vary. Consequently, plants have developed adaptive strategies to cope with low iron or phosphate levels, including alternation between root growth enhancement and attenuation. How this adaptive response is achieved remains unclear. Here, we found that low iron accelerates root growth in Arabidopsis thaliana by activating brassinosteroid signaling, whereas low-phosphate-induced high iron accumulation inhibits it. Altered hormone signaling intensity also modulated iron accumulation in the root elongation and differentiation zones, constituting a feedback response between brassinosteroid and iron. Surprisingly, the early effect of low iron levels on root growth depended on the brassinosteroid receptor but was apparently hormone ligand-independent. The brassinosteroid receptor inhibitor BKI1, the transcription factors BES1/BZR1, and the ferroxidase LPR1 operate at the base of this feedback loop. Hence, shared brassinosteroid and iron regulatory components link nutrient status to root morphology, thereby driving the adaptive response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Ferro/análise , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Fosfatos/análise , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas/genética , Proteínas Nucleares/genética , Oxirredutases/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA