Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.251
Filtrar
1.
Biomed Pharmacother ; 178: 117221, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111078

RESUMO

Combining two or more chemicals in chemotherapy is rapidly increasing because of its higher efficacy, lower toxicity, lower dosages, and lower drug resistance. Here, we identified a novel combination of luteolin (LUT) and curcumin (CUR), two bioactive compounds from foods, synergistically suppressed triple-negative breast cancer (TNBC) cell proliferation (LUT 30 µM + CUR 20 µM), colony formation (LUT 1 µM + CUR 2 µM), and tumor growth in xenograft mice (LUT 10 mg/kg body weight/day + CUR 20 mg/kg body weight/day, i.p. injection every other day, 5 weeks), while the individual chemical alone did not show these inhibitory effects significantly at the selected concentrations/dosages. Our total RNA transcriptome analysis in xenograft tumors revealed that combining LUT and CUR synergistically activated type I interferon (IFN) signaling and suppressed transforming growth factor-beta (TGF-ß) signaling pathways, which was further confirmed by the expression/activity of several proteins of the pathways in tumors. In addition, this combination of LUT and CUR also synergistically decreased oncoprotein levels of c-Myc and Notch1, the critical molecules required to maintain stem cell properties, tumor clonal evolution, and drug resistance. These results suggest that the combination of LUT and CUR synergistically inhibits TNBC by suppressing multiple cellular mechanisms, such as proliferation, colony formation, and transformation, as well as tumor migration, invasion, and metastasis, via regulating IFN and TGF-ß signaling pathways. Therefore, combining LUT and CUR may be an effective therapeutic agent to treat highly aggressive, drug-resistant TNBC patients after clinical trials.

2.
Plant Physiol Biochem ; 215: 108984, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098186

RESUMO

The postharvest quality of winter jujubes is prone to deterioration, including inevitable pericarp reddening and rapid nutrient loss from the flesh, significantly impacting its edible quality and commercial value. As a crucial metabolic pathway in plants, phenylpropane metabolism not only regulates plant stress resistance but also closely relates to various coloration effects. In this study, we investigated the effects of luteolin solutions on postharvest color changes and phenylpropanoid metabolism in winter jujube. The results indicated that compared to the control group, winter jujube fruit treated with 200 mg L-1 luteolin exhibited improved quality indexes, increased antioxidant capacity (capability of eliminating ABTS and DPPH radicals), and higher activities of antioxidant enzymes(superoxide dismutase (SOD), and catalase (CAT)). This led to a reduction in the oxidation of phenolic substances in winter jujube. Furthermore, luteolin treatment inhibited phenylpropanoid metabolism by suppressing the activities of 4-Coumarate: coenzyme A ligase (4CL), phenylalanine ammonilyase (PAL), and cinnamate 4 hydroxylase (C4H), as well as the expression of ZjUFGT, ZjDFT, and ZjPAL genes. Consequently, anthocyanin and quercetin synthesis were limited while the degradation rate of chlorophyll and carotenoid synthesis were slowed down after luteolin treatment. This resulted in delayed reddening of winter jujube following luteolin treatment. In conclusion, luteolin exhibits potential application prospects as a preservative for inhibiting reddening and browning in winter jujubes.

3.
Environ Toxicol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105397

RESUMO

In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.

4.
Biomed Pharmacother ; 178: 117236, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096619

RESUMO

In infantile nephropathic cystinosis, variants of the CTNS gene cause accumulation of cystine in lysosomes, causing progressive damage to most organs. Patients usually present before 1 year of age with signs of renal Fanconi syndrome. Cysteamine therapy allows cystine clearance from lysosomes and delays kidney damage but does not prevent progression to end-stage kidney disease, suggesting that pathways unrelated to cystine accumulation are also involved. Among these, impaired autophagy, altered endolysosomal trafficking, and increased apoptosis have emerged in recent years as potential targets for new therapies. We previously showed that luteolin, a flavonoid compound, improves these abnormal pathways in cystinotic cells and in zebrafish models of the disease. Herein, we have investigated if prolonged luteolin treatment ameliorates kidney damage in a murine model of cystinosis. To this end, we have treated Ctns-/- mice from 2 to 8 months with 150 mg/kg/day of luteolin. No significant side effects were observed. Compared to untreated animals, analyses of kidney cortex samples obtained after sacrifice showed that luteolin decreased p62/SQSTM1 levels (p <0.001), improved the number, size, and distribution of LAMP1-positive structures (p <0.02), and decreased tissue expression of cleaved caspase 3 (p <0.001). However, we did not observe improvements in renal Fanconi syndrome and kidney inflammation. Kidney function remained normal during the time of the study. These results indicate that luteolin has positive effects on the apoptosis and endo-lysosomal defects of cystinotic proximal tubular cells. However, these beneficial effects did not translate into improvement of renal Fanconi syndrome.

5.
Acta Pharmacol Sin ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103531

RESUMO

Liver fibrosis, one of the leading causes of morbidity and mortality worldwide, lacks effective therapy. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. Luteolin-7-diglucuronide (L7DG) is the major flavonoid extracted from Perilla frutescens and Verbena officinalis. Their beneficial effects in the treatment of liver diseases were well documented. In this study we investigated the anti-fibrotic activities of L7DG and the potential mechanisms. We established TGF-ß1-activated mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 as in vitro liver fibrosis models. Co-treatment with L7DG (5, 20, 50 µM) dose-dependently decreased TGF-ß1-induced expression of fibrotic markers collagen 1, α-SMA and fibronectin. In liver fibrosis mouse models induced by CCl4 challenge alone or in combination with HFHC diet, administration of L7DG (40, 150 mg·kg-1·d-1, i.g., for 4 or 8 weeks) dose-dependently attenuated hepatic histopathological injury and collagen accumulation, decreased expression of fibrogenic genes. By conducting target prediction, molecular docking and enzyme activity detection, we identified L7DG as a potent inhibitor of protein tyrosine phosphatase 1B (PTP1B) with an IC50 value of 2.10 µM. Further studies revealed that L7DG inhibited PTP1B activity, up-regulated AMPK phosphorylation and subsequently inhibited HSC activation. This study demonstrates that the phytochemical L7DG may be a potential therapeutic candidate for the treatment of liver fibrosis.

6.
J Agric Food Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161099

RESUMO

Luteolin-7-O-glucoside(L7G), a glycosylation product of luteolin, is present in a variety of foods, vegetables, and medicinal herbs and is commonly used in dietary supplements due to its health benefits. Meanwhile, luteolin-7-O-glucoside is an indicator component for the quality control of honeysuckle in the pharmacopoeia. However, its low content in plants has hindered its use in animal pharmacological studies and clinical practice. In this study, a novel 7-O-glycosyltransferase CmGT from Cucurbita moschata was cloned, which could efficiently convert luteolin into luteolin-7-O-glucoside under optimal conditions (40 °C and pH 8.5). To further improve the catalytic efficiency of CmGT, a 3D structure of CmGT was constructed, and directed evolution was performed. The mutant CmGT-S16A-T80W was obtained by using alanine scanning and iterative saturation mutagenesis. This mutant exhibited a kcat/Km value of 772 s-1·M-1, which was 3.16-fold of the wild-type enzyme CmGT. Finally, by introducing a soluble tag and UDPG synthesis pathway, the strain BXC was able to convert 1.25 g/L of luteolin into 1.91 g/L of luteolin-7-O-glucoside under optimal conditions, achieving a molar conversion rate of 96% and a space-time yield of 27.08 mg/L/h. This study provides an efficient method for the biosynthesis of luteolin-7-O-glucoside, which holds broad application prospects in the food and pharmaceutical industry.

7.
BMC Complement Med Ther ; 24(1): 305, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143459

RESUMO

CONTEXT: There are currently no approved specific clinical drugs for non-alcoholic fatty liver disease (NAFLD). Salvia miltiorrhiza Bunge-Reynoutria japonica Houtt. drug pair (SRDP) has been widely used in the treatment of chronic liver diseases. However, the mechanism of SRDP treating NAFLD remains unclear. OBJECTIVE: Based on network analysis and in vitro experimental verification, we investigated the effect of SRDP on lipid deposition and explored its possible mechanism for the treatment of NAFLD. METHODS: The TCMSP platform was used to screen the active metabolites of SRDP and corresponding targets. The GeneCards and OMIM databases were used to screen the NAFLD targets. The drug-disease intersecting targets were extracted to obtain the potential targets. Then the protein-protein interaction (PPI) and drug-active metabolites-target-disease network map was constructed. The DAVID database was performed to GO and KEGG pathway enrichment analysis for the intersecting targets. The core active metabolite and signaling pathway were verified by in vitro experiments. RESULTS: Network analysis predicted 59 active metabolites and 89 targets of SRDP for the treatment of NAFLD. 112 signaling pathways were enriched for KEGG pathways, including PI3K-AKT signaling pathway,etc. It was confirmed that luteolin, the core active metabolite of SRDP, effectively reduced fat accumulation and intracellular triglyceride content in HepG2 fatty liver cell model. Luteolin could inhibit mTOR pathway by inhibiting PI3K-AKT signaling pathway phosphorylation, thereby activating autophagy to alleviate NAFLD. DISCUSSION AND CONCLUSION: The results of this study validate and predict the possible role of various active metabolites of SRDP in the treatment of NAFLD through multiple targets and signaling pathways. The core active metabolite of SRDP, luteolin can alleviate NAFLD by acting on the PI3K-AKT-mTOR signaling pathway to induce autophagy.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Salvia miltiorrhiza , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Farmacologia em Rede
8.
J Anim Sci ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066584

RESUMO

Soybean meal is known to be able to cause intestinal damage and dysfunction in early-weaned piglets. However, research on natural compounds that can alleviate these effects is scarce. In this study, the effect of luteolin, a flavonoid natural plant polyphenol, on intestinal health of piglets fed on soybean meal based diet was explored. A total of eighteen 21-day-old piglets were selected and randomly divided into three groups: a negative control group fed with an animal protein-based diet, a positive control group fed with a soybean meal -based diet, and a luteolin group that was fed with the positive control diet supplemented with luteolin. The results suggested that luteolin supplementation significantly increased the average daily gain (ADG) and average daily feed intake (ADFI) of early-weaned piglets, while effectively reducing the diarrhea incidence. Additionally, luteolin supplementation lowered the levels of soybean antigen-specific IgG and IgE anitbodies, increased the superoxide dismutase (SOD) activity in both sera and small intestine mucosa, and enhanced the total antioxidant capacity (T-AOC) in sera. Further research found that luteolin supplementation increased the intestinal villi height and decreased the crypt depth, resulting in an increased ratio of villi to crypts. At the same time, it reduced the concentration of serum diamine oxidase (DAO), improving intestinal barrier function. Moreover, luteolin significantly decreased the gene expression of Bax and Caspase-3, reducing cell apoptosis in the intestinal mucosa. Luteolin supplementation also increased the abundance of Actinobacteria at the phylum level, reduced the abundance of Prevotella and increased the abundance of Olsenella at the genus level. In conclusion, the supplementation of luteolin to the soybean meal diet was capable of effectively reducing allergic response, enhancing the antioxidant capacity of early-weaned piglets, protecting their intestinal barrier function, inhibiting intestinal mucosal cell apoptosis, and altering the intestinal microbiota structure, therefore promoting intestinal health and improving production performance in early-weaned piglets.

9.
BMC Public Health ; 24(1): 2044, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080632

RESUMO

BACKGROUND: Luteolin (Lut), a flavonoid present in the daily diet, exhibits potent anti-inflammatory and renoprotective effects. However, the association between Lut and chronic kidney disease (CKD) remains uncertain. The objective of this study is to explore the potential correlation. METHODS: A total of 2,393 CKD patients were enrolled in a prospective cohort in the National Health and Nutrition Examination Survey (NHANES). A 24-h dietary recall was utilized to estimate the intake of dietary Lut based on the type and amount of food consumed. The National Death Index mortality data was utilized to ascertain all-cause and cardiac mortality (as of December 27, 2023). Cox proportional hazards model was used to estimate the relationship between Lut intake and mortality risk. RESULTS: The median Lut intake was 0.305 mg/day, with interquartile range was 0.105-0.775 mg/day. During the follow-up period (median, 93 months), 682 all-cause deaths (217 cardiovascular disease [CVD] deaths) were recorded. Per unit increase in Lut intake reduced all-cause mortality by 27% (P < 0.001) and cardiac mortality by 34% (P = 0.01) in CKD patients. There was an inverse dose-response association between Lut intake (range: 0-8.945 mg/day) and mortality risk. Consistent results were also shown when stratified by age, sex, race, marital status, body mass index, CKD stage, urine protein creatinine ratio strata, CKD progression risk, hypertension, and CVD. CONCLUSION: Dietary Lut intake is associated with a reduction in all-cause and cardiac mortality among CKD patients, potentially attributable to the anti-inflammatory characteristics of Lut.


Assuntos
Doenças Cardiovasculares , Luteolina , Inquéritos Nutricionais , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Insuficiência Renal Crônica/mortalidade , Doenças Cardiovasculares/mortalidade , Pessoa de Meia-Idade , Estudos Prospectivos , Luteolina/administração & dosagem , Dieta , Adulto , Causas de Morte , Idoso , Modelos de Riscos Proporcionais
10.
J Cancer ; 15(14): 4717-4730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006085

RESUMO

Background: Luteolin (LUT) is a bioactive compound with several pharmacological activities including anticancer effect. Doxorubicin (DOX) is an anthracycline chemotherapeutic drug that have proven to be effective in treating various types of cancers. Polymeric micelles (PMs) containing biologically active materials have emerged as prospective dosage forms with high drug-loading, which can add therapeutic benefit to the poorly water-soluble compounds and novel chemical entities. PMs are effective in delivering several drugs, such as anticancer drugs, antifungal drugs, flavonoids and drugs targeting the brain. The aim of the current study is to develop PMs for LUT and DOX as a combined delivery system for cancer therapy. Methods: PMs were prepared using 2.5% of each of LUT and DOX with varying compositions of Poloxamer 188, Poloxamer 407, Vitamin E (TPGS), Poloxamer 123 and Gellucire 44/14 at room temperature. Particle size, polydispersity index, zeta potential, were achieved using Zetasizer Nano particle size analyzer and the sizes were further confirmed with transmission electron microscopy (TEM). Prepared PMs were further characterized using powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). An MTT assay was performed on breast cancer (MCF-7) cells and liver cancer (HepG2) cells to determine the cytotoxic effect of the different PMs formulations. Results: PMs were successfully developed and optimized using 74.3% Poloxamer 407 with 20.7% Vitamin E (TPGS), and 70% Poloxamer 407 with 25% Gellucire 44/14, respectively. The droplet size and polydispersity index were found to be 62.03 ± 3.99 nm, 91.96 ± 5.80 nm and 0.33 ± 0.05, 0.59± 0.03, respectively for PMs containing TPGS and Gellucire 44/14. Zeta potentials of the PMs containing TPGS and Gellucire 44/14 were recorded as -2.27 ±0.11mV and -7.78 ± 0.10 mV, respectively. The PMs showed a spherical structure with approximately 50-90 nm range evident by TEM analysis. The PXRD spectra of PMs powder presented the amorphization of LUT and DOX. The FTIR spectra of LUT-loaded and DOX-loaded PMs were identical, suggesting consistent PMs composition. The MTT assay showed that the representative combined drug loaded PMs treatment led to a reduction in the viability of MCF-7 and HepG2 cells compared to drug free PMs and pure LUT, DOX alone. Conclusions: PMs with LUT and DOX exhibited significant cytotoxic effects against breast and liver cancer cells and could thus be an important new pharmaceutical formulation to treat cancer.

11.
Int J Mol Med ; 54(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994756

RESUMO

Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem­like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti­tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)­resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit­8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT­related proteins and stem cell markers after sphere formation. Parental cells and drug­resistant cells were screened by high­throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX­resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug­resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX­resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX­resistant ESCC and could be a promising agent for the treatment of PTX­resistant ESCC cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Luteolina , Paclitaxel , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Luteolina/farmacologia , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Masculino
12.
Asian Pac J Cancer Prev ; 25(7): 2329-2335, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068565

RESUMO

INTRODUCTION: Prostate cancer has emerged as a widespread health concern, with systemic inflammation believed to substantially contribute to its development and progression. The presence of systemic inflammatory responses has been established as an independent predictor of unfavorable long-term outcomes in prostate cancer patients. The goal of this study is to inhibit RXRα and RXRß receptors, which are involved in prostate cancer, with Luteolin, Formononetin, and Kaempferol, with varying success. METHODS: Retinoid X receptors (RXRs) hold crucial roles within the nuclear receptor (NR) superfamily, and compelling evidence from preclinical studies underscores the therapeutic potential of targeting RXRs for treating neurodegenerative and inflammatory conditions. Consequently, the ability to regulate and modulate RXRs using phytoestrogen ligands, Formononetin, Kaempferol, and Luteolin, assume paramount importance in treatment strategies. RESULTS: The comprehensive in silico findings of this study vividly demonstrate the remarkable efficacy of Luteolin in inhibiting and modulating RXRα and RXRß, while Formononetin emerges as a notably potent suppressor of RXRß. Kaempferol, as the third compound, also exhibits commendable inhibitory attributes, although its impact is slightly less pronounced compared to the other two. DISCUSSION: These findings highlight the notable binding and inhibition capabilities to RXRα and RXRß, offering valuable insights for potential prostate cancer treatment avenues warranting further exploration through in vitro and in vivo analyses.


Assuntos
Isoflavonas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias da Próstata , Receptor X Retinoide alfa , Receptor X Retinoide beta , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Isoflavonas/farmacologia , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide beta/metabolismo , Quempferóis/farmacologia , Luteolina/farmacologia
13.
Biochem Biophys Res Commun ; 733: 150438, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053105

RESUMO

Revealing the interaction mechanism of proteins with bioactive molecules and the location of their binding pockets is crucial for predicting the structure-function relationship of proteins in drug discovery and design. Despite some published papers on the interaction of ß-casein with small bioactive molecules, the ambiguity of the location and constituent amino acids of ß-casein binding pockets prompted us to identify them by in silico simulation of its interaction with three polyphenols, chrysin, apigenin, and luteolin. Molecular docking revealed that the primary ß-casein binding pocket for chrysin consists of five nonpolar amino acids (Leu73, Phe77, Pro80, Ile89, and Pro196), three polar neutral amino acids (Ser137, Gln138, and Gln197), and two polar charged amino acids (Glu136, and Arg198). For ß-casein/apigenin and ß-casein/luteolin complexes, Asn83 also contributes to forming the pocket. Molecular dynamics provided more details, such as the relative contribution of determinative amino acids and the role of various forces. For example, we found that Glu210, Glu132, and Glu35 are the most destructive residues in the binding of chrysin, apigenin, and luteolin to ß-casein, respectively. Also, we observed that hydrophobic forces mainly stabilize ß-casein/chrysin and ß-casein/apigenin, and polar solvation (including hydrogen bonds) stabilizes ß-casein/luteolin, all by spontaneous processes.

14.
J Tradit Chin Med ; 44(4): 670-679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39066527

RESUMO

OBJECTIVE: To investigate the effects of luteolin on chronic unpredictable mild stress (CUMS)-induced depressive rats and corticosterone (CORT)-induced depressive primary hippocampal neurons, and to elucidate the mechanism behind the action. METHODS: The antidepressant mechanism of luteolin was studied by using CUMS rat model and primary hippocampal neurons in fetal rats. In vivo, novelty suppressed feeding, open-field and sucrose preference tests as well as Morris water maze were evaluated. The content of brain derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), norepinephrine (NE), and dopamine (DA) in serum were detected by enzyme-linked immunosorbent assay. The mechanisms of luteolin were explored based on neurotrophin and hippocampal neurogenesis, and proliferation. Survival of the septo-temporal axis in hippocampus was assayed using the 5-bromo-2-deoxyuridine (BrdU), the expression of BDNF, neurotrophin-3 (NT-3), and nerve growth factor (NGF) in hippocampus dentate gyrus region were measured by Western-blotting. In vitro, BDNF, NT-3, tropomyosin receptor kinase B (TrkB), and phosphorylated cyclic adenosine monophosphate responsive element binding protein (p-CREB) were detected through the high content analysis (HCA) to investigate neurotrophin and apoptosis. RESULTS: Induction of CUMS in rats induced depressive symptoms, while luteolin significantly enhanced sucrose consumption, decreased feeding latency, increased locomotor activity, escape latency, distance of target quadrant and regulated the content of depressive-like biomarkers. Histology analysis revealed that luteolin increased the abundance of new born neurons that had been labeled with BrdU, BrdU + neuronal nuclear antigen, and BrdU + doublecortin in septo-temporal axis of S2 (mid-septal) and T3 (mid-temporal). Moreover, expression of BDNF, NT-3, and NGF increased significantly in the septo-temporal axis of S2 and T3. HCA showed increased expression of BDNF, NT-3, TrkB and p-CREB in primary hippocampal neurons. CONCLUSION: The results provided direct evidence that luteolin has an antidepressant effect and could effectively promote the regeneration of the septotemporal axis nerve and hippocampal neuronutrition, which suggested that the antidepressant effect of luteolin may be related to hippocampal neurogenesis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Luteolina , Neurogênese , Neurônios , Ratos Sprague-Dawley , Animais , Luteolina/farmacologia , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurogênese/efeitos dos fármacos , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Humanos , Estresse Psicológico/fisiopatologia , Estresse Psicológico/tratamento farmacológico , Feminino , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/fisiopatologia , Antidepressivos/farmacologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética
15.
Biotechnol Lett ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066959

RESUMO

When hypoxanthine was utilized as the activator for the salvage pathway in cAMP synthesis, xanthine oxidase would generate in quantity leading to low hypoxanthine conversion ratios and cell viability. To enhance cAMP salvage synthesis, fermentations with citrate/luteolin and hypoxanthine coupling added were conducted in a 7 L bioreactor and then multiple physiological indicators of fermentation with luteolin addition were assayed. Due to hypoxanthine feeding, cAMP productivity reached 0.066 g/(L·h) with 43.5% higher than control, however, cAMP synthesis, cell growth and glucose uptake all ceased at 50 h which was shortened by 22 h in comparison to control. The addition of citrate resulted in the cessation of fermentation at 61 h, on the contrary, owing to luteolin addition, cAMP fermentation performance was enhanced significantly during the whole fermentation period (72 h) with higher hypoxanthine conversion ratios and cAMP contents when compared with citrate and only hypoxanthine added batches. Multiple physiological indicators revealed that luteolin inhibited xanthine oxidase activity reducing hypoxanthine decomposition and ROS generation. ATP/AMP, NADH/NAD+ and NADPH/NADP+ were significantly increased especially at the late phase. Moreover, HPRT, PUP expression contents and corresponding gene transcription levels were also elevated. Luteolin could inhibit xanthine oxidase activity and further decrease hypoxanthine decomposition and ROS generation leading to higher hypoxanthine conversion and less cell damage for cAMP salvage synthesis efficiently.

16.
Neurotoxicology ; 103: 310-319, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004286

RESUMO

Isoflurane is one of the most commonly used anaesthetic agents in surgery procedures. During the past decades, isoflurane has been found to cause impairment in neurological capabilities in new-borns and elderly patients. Luteolin is a flavonoid that has been documented to possess a neuroprotective effect. Here we investigated the putative neuroprotective effects of luteolin on isoflurane-induced neurotoxicity in mouse hippocampal neuronal HT22 cells and explored the potential mechanisms. We demonstrated that luteolin improved mitochondrial dysfunction and reduced oxidative stress and apoptosis in isoflurane-treated HT22 cells, and thus inhibiting the isoflurane-induced neuronal injury. Further investigations showed that isoflurane exposure caused miR-214 downregulation, which could be mitigated by treatment with luteolin. Knockdown of miR-214 attenuated the neuroprotection of luteolin on isoflurane-induced neuronal injury. More importantly, luteolin inhibited isoflurane-caused regulation of the PTEN/Akt pathway, while miR-214 knockdown altered the regulatory effect of luteolin on the PTEN/Akt pathway. Furthermore, the effects of miR-214 knockdown on the neuroprotection of luteolin could also be prevented by knockdown of PTEN, implying that the neuroprotective effect of luteolin was mediated by miR-214/PTEN/Akt signaling pathway. These findings provided evidence for the potential application of luteolin in preventing isoflurane-induced neurotoxicity.


Assuntos
Hipocampo , Isoflurano , Luteolina , MicroRNAs , Neurônios , Fármacos Neuroprotetores , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Isoflurano/toxicidade , Isoflurano/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Luteolina/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , MicroRNAs/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos
17.
Pathol Res Pract ; 260: 155430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39038389

RESUMO

Due to the increasing incidence of cancer and the difficulties in determining the safety profile of existing therapeutic approaches, cancer research has recently become heavily involved in the search for new therapeutic approaches. The therapeutic significance of natural substances, especially flavonoids, against the onset and progression of cancer has been emphasized in traditional food-based medicine. Interestingly, the flavone luteolin possesses biological effects that have been linked to its anti-inflammatory, antioxidant, and anticancer effects. Luteolin interacts with several downstream chemicals and signaling pathways, including those involved in apoptosis, autophagy, cell cycle progression, and angiogenesis, to exert its anticancer effects on various cancerous cells. A complete understanding of both intrinsic and extrinsic apoptotic pathways, autophagy, and, most critically, the nanodelivery of luteolin in liver cancer is provided in the current review.


Assuntos
Apoptose , Neoplasias Hepáticas , Luteolina , Transdução de Sinais , Luteolina/farmacologia , Luteolina/uso terapêutico , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
18.
Int Immunopharmacol ; 138: 112587, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38972211

RESUMO

There is a growing trend of applying traditional Chinese medicine (TCM) to treat immune diseases. This study reveals the possible mechanism of luteolin, an active ingredient in the core prescription of TCM, in alleviating systemic sclerosis (SSc) inflammation. Bibliometrics was performed to retrieve the core keywords of SSc inflammation. The key inflammatory indicators in the serum samples of 50 SSc patients were detected by ELISA. Data mining was applied for correlation analysis, association rule analysis, and binary logistic regression analysis on the clinical indicators and medication of 50 SSc patients before and after treatment to determine the core prescription. Network pharmacology was used for identifying candidate genes and pathways; molecular docking was conducted to determine the core monomer components of the prescription, providing a basis for subsequent in vitro molecular mechanism research. The effect of luteolin on SSc-human dermal fibroblasts (HDF) viability and inflammatory factors was evaluated by means of ELISA, RT-PCR, and Western blot. The role of TNF in inflammation was explored by using a TNF overexpression vector, NF-κB inhibitor (PKM2), and SSc-HDF. The involvement of TNF/NF-κB pathway was validated by RT-PCR, Western blot, and immunofluorescence. TCM treatment partially corrected the inflammatory changes in SSc patients, indicating its anti-inflammatory effects in the body. Atractylodes, Yam, Astragalus root, Poria cocos, Pinellia ternata, Salvia miltiorrhiza, Safflower, Cassia twig, and Angelica were identified as the core prescriptions for improving inflammatory indicators. Luteolin was the main active ingredient in the prescription and showed a strong binding energy with TNF and NF-κB. Luteolin exerted anti-inflammatory effects in vitro by reducing inflammatory cytokines in SSc-HDF and inhibiting the activation of TNF/NF-κB. Mechanistically, luteolin inhibited the activation of the TNF/NF-κB pathway in SSc-HDF, as manifested by an increase in extranuclear p-P65 and TNF but a decrease in intranuclear p-P65. Interestingly, the addition of PKM2 augmented the therapeutic function of luteolin against inflammation in SSc-HDF. Our study showed the TCM alleviates the inflammatory response of SSc by inhibiting the activation of the TNF/NF-κB pathway and is an effective therapeutic agent for the treatment of SSc.


Assuntos
Anti-Inflamatórios , Fibroblastos , Luteolina , NF-kappa B , Escleroderma Sistêmico , Humanos , Luteolina/farmacologia , Luteolina/uso terapêutico , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/imunologia , NF-kappa B/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Feminino , Masculino , Biologia de Sistemas , Pessoa de Meia-Idade , Inflamação/tratamento farmacológico , Inflamação/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Simulação de Acoplamento Molecular , Adulto , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Medicina Tradicional Chinesa , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
19.
Front Pharmacol ; 15: 1430564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983919

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria have become a major challenge for global healthcare systems. The search for antibacterial compounds from plants has received increasing attention in the fight against MDR bacteria. As a medicinal and edible plant, Lophatherum gracile Brongn. (L. gracile) has favorable antibacterial effect. However, the main antibacterial active compound and its antimicrobial mechanism are not clear. Here, our study first identified the key active compound from L. gracile as luteolin. Meanwhile, the antibacterial effect of luteolin was detected by using the broth microdilution method and time-kill curve analysis. Luteolin can also cause morphological structure degeneration and content leakage, cell wall/membrane damage, ATP synthesis reduction, and downregulation of mRNA expression levels of sulfonamide and quinolones resistance genes in multidrug-resistant Escherichia coli (MDR E. coli). Furthermore, untargeted UPLC/Q-TOF-MS-based metabolomics analysis of the bacterial metabolites revealed that luteolin significantly changed riboflavin energy metabolism, bacterial chemotaxis cell process and glycerophospholipid metabolism of MDR E. coli. This study suggests that luteolin could be a potential new food additive or preservative for controlling MDR E. coli infection and spread.

20.
Neurochem Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987448

RESUMO

Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA