Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Biomolecules ; 14(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39334878

RESUMO

The dual methyltransferase methyltransferase-like protein 13, also referred to as METTL13, or formerly known as FEAT (faintly expressed in healthy tissues, aberrantly overexpressed in tumors), has garnered attention as a significant enzyme in various cancer types, as evidenced by prior literature reviews. Recent studies have shed light on new potential roles for METTL13, hinting at its promise as a therapeutic target. This review aims to delve into the multifaceted biology of METTL13, elucidating its proposed mechanisms of action, regulatory pathways, and its implications in disease states, as supported by the current body of literature. Furthermore, the review will highlight emerging trends and gaps in our understanding of METTL13, paving the way for future research efforts. By contextualizing METTL13 within the broader landscape of cancer biology and therapeutics, this study serves as an introductory guide to METTL13, aiming to provide readers with a thorough understanding of its role in disease phenotypes.


Assuntos
Metiltransferases , Neoplasias , Humanos , Metiltransferases/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimologia , Animais , Lisina/metabolismo , Metilação
2.
Adv Sci (Weinh) ; : e2404608, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250325

RESUMO

Post-translational modifications on the histone H3 tail regulate chromatin structure, impact epigenetics, and hence the gene expressions. Current chemical modulation tools, such as unnatural amino acid incorporation, protein splicing, and sortase-based editing, have allowed for the modification of histones with various PTMs in cellular contexts, but are not applicable for editing native chromatin. The use of small organic molecules to manipulate histone-modifying enzymes alters endogenous histone PTMs but lacks precise temporal and spatial control. To date, there has been no achievement in modulating histone methylation in living cells with spatiotemporal resolution. In this study, a new method is presented for temporally manipulating histone dimethylation H3K9me2 using a photo-responsive inhibitor that specifically targets the methyltransferase G9a on demand. The photo-caged molecule is stable under physiological conditions and cellular environments, but rapidly activated upon exposure to light, releasing the bioactive component that can immediately inhibit the catalytic ability of the G9a in vitro. Besides, this masked compound could also efficiently reactivate the inhibition of methyltransferase activity in living cells, subsequently suppress H3K9me2, a mark that regulates various chromatin functions. Therefore, the chemical system will be a valuable tool for manipulating the epigenome for therapeutic purposes and furthering the understanding of epigenetic mechanisms.

3.
Anal Chim Acta ; 1324: 343099, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218580

RESUMO

BACKGROUND: In-cell NMR is a valuable technique for investigating protein structure and function in cellular environments. However, challenges arise due to highly crowded cellular environment, where nonspecific interactions between the target protein and other cellular components can lead to signals broadening or disappearance in NMR spectra. RESULTS: We implemented chemical reduction methylation to selectively modify lysine residues on protein surfaces aiming to weaken charge interactions and recover obscured NMR signals. This method was tested on six proteins varying in molecular size and lysine content. While methylation did not disrupt the protein's native conformation, it successful restored some previously obscured in-cell NMR signals, particularly for proteins with high isoelectric points that decreased post-methylation. SIGNIFICANCE: This study affirms lysine methylation as a feasible approach to enhance the sensitivity of in-cell NMR spectra for protein studies. By mitigating signal loss due to nonspecific interactions, this method expands the utility of in-cell NMR for investigating proteins in their natural cellular environment, potentially leading to more accurate structural and functional insights.


Assuntos
Lisina , Ressonância Magnética Nuclear Biomolecular , Lisina/química , Lisina/análise , Metilação , Proteínas/química , Proteínas/análise , Humanos
4.
mBio ; : e0177324, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189746

RESUMO

Lysine and arginine methylation is an important regulator of enzyme activity and transcription in eukaryotes. However, little is known about this covalent modification in bacteria. In this work, we investigated the role of methylation in bacteria. By reanalyzing a large phyloproteomics data set from 48 bacterial strains representing six phyla, we found that almost a quarter of the bacterial proteome is methylated. Many of these methylated proteins are conserved across diverse bacterial lineages, including those involved in central carbon metabolism and translation. Among the proteins with the most conserved methylation sites is ribosomal protein L11 (bL11). bL11 methylation has been a mystery for five decades, as the deletion of its methyltransferase PrmA causes no cell growth defects. Comparative proteomics analysis combined with inorganic polyphosphate and guanosine tetra/pentaphosphate assays of the ΔprmA mutant in Escherichia coli revealed that bL11 methylation is important for stringent response signaling. In the stationary phase, we found that the ΔprmA mutant has impaired guanosine tetra/pentaphosphate production. This leads to a reduction in inorganic polyphosphate levels, accumulation of RNA and ribosomal proteins, and an abnormal polysome profile. Overall, our investigation demonstrates that the evolutionarily conserved bL11 methylation is important for stringent response signaling and ribosomal activity regulation and turnover. IMPORTANCE: Protein methylation in bacteria was first identified over 60 years ago. Since then, its functional role has been identified for only a few proteins. To better understand the functional role of methylation in bacteria, we analyzed a large phyloproteomics data set encompassing 48 diverse bacteria. Our analysis revealed that ribosomal proteins are often methylated at conserved residues, suggesting that methylation of these sites may have a functional role in translation. Further analysis revealed that methylation of ribosomal protein L11 is important for stringent response signaling and ribosomal homeostasis.

5.
Angew Chem Int Ed Engl ; 63(41): e202408564, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39011605

RESUMO

Proteomics is a powerful method to comprehensively understand cellular posttranslational modifications (PTMs). Owing to low abundance, tryptic peptides with PTMs are usually enriched for enhanced coverage by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Affinity chromatography for phosphoproteomes by metal-oxide and pan-specific antibodies for lysine acetylome allow identification of tens of thousands of modification sites. Lysine methylation is a significant PTM; however, only hundreds of methylation sites were identified by available approaches. Herein we report an aryl diazonium based chemoselective strategy that enables enrichment of monomethyllysine (Kme1) peptides through covalent bonds with extraordinary sensitivity. We identified more than 10000 Kme1 peptides from diverse cell lines and mouse tissues, which implied a wide lysine methylation impact on cellular processes. Furthermore, we found a significant amount of methyl marks that were not S-adenosyl methionine (SAM)-dependent by isotope labeling experiments.


Assuntos
Lisina , Proteoma , Lisina/química , Metilação , Animais , Proteoma/análise , Proteoma/química , Camundongos , Humanos , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Cromatografia Líquida , Peptídeos/química , Peptídeos/metabolismo
6.
Biomolecules ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062531

RESUMO

DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.


Assuntos
Adenosina , Estabilidade Proteica , Humanos , Células HEK293 , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Estabilidade Proteica/efeitos dos fármacos , Metilação , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Temperatura
7.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062577

RESUMO

Glucose and lipid metabolism are essential energy sources for the body. Dysregulation in these metabolic pathways is a significant risk factor for numerous acute and chronic diseases, including type 2 diabetes (T2DM), Alzheimer's disease (AD), obesity, and cancer. Post-translational modifications (PTMs), which regulate protein structure, localization, function, and activity, play a crucial role in managing cellular glucose and lipid metabolism. Among these PTMs, lysine methylation stands out as a key dynamic modification vital for the epigenetic regulation of gene transcription. Emerging evidence indicates that lysine methylation significantly impacts glucose and lipid metabolism by modifying key enzymes and proteins. This review summarizes the current understanding of lysine methylation's role and regulatory mechanisms in glucose and lipid metabolism. We highlight the involvement of methyltransferases (KMTs) and demethylases (KDMs) in generating abnormal methylation signals affecting these metabolic pathways. Additionally, we discuss the chemical biology and pharmacology of KMT and KDM inhibitors and targeted protein degraders, emphasizing their clinical implications for diseases such as diabetes, obesity, neurodegenerative disorders, and cancers. This review suggests that targeting lysine methylation in glucose and lipid metabolism could be an ideal therapeutic strategy for treating these diseases.


Assuntos
Glucose , Metabolismo dos Lipídeos , Lisina , Processamento de Proteína Pós-Traducional , Humanos , Lisina/metabolismo , Metilação , Glucose/metabolismo , Animais , Epigênese Genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico
8.
Biomark Res ; 12(1): 74, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080807

RESUMO

Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.

9.
Int J Biol Sci ; 20(8): 3008-3027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904013

RESUMO

SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Histona-Lisina N-Metiltransferase , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Movimento Celular/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Metilação , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Regulação Neoplásica da Expressão Gênica
10.
BMC Genomics ; 25(1): 442, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702658

RESUMO

Genes containing the SET domain can catalyse histone lysine methylation, which in turn has the potential to cause changes to chromatin structure and regulation of the transcription of genes involved in diverse physiological and developmental processes. However, the functions of SET domain-containing (StSET) genes in potato still need to be studied. The objectives of our study can be summarized as in silico analysis to (i) identify StSET genes in the potato genome, (ii) systematically analyse gene structure, chromosomal distribution, gene duplication events, promoter sequences, and protein domains, (iii) perform phylogenetic analyses, (iv) compare the SET domain-containing genes of potato with other plant species with respect to protein domains and orthologous relationships, (v) analyse tissue-specific expression, and (vi) study the expression of StSET genes in response to drought and heat stresses. In this study, we identified 57 StSET genes in the potato genome, and the genes were physically mapped onto eleven chromosomes. The phylogenetic analysis grouped these StSET genes into six clades. We found that tandem duplication through sub-functionalisation has contributed only marginally to the expansion of the StSET gene family. The protein domain TDBD (PFAM ID: PF16135) was detected in StSET genes of potato while it was absent in all other previously studied species. This study described three pollen-specific StSET genes in the potato genome. Expression analysis of four StSET genes under heat and drought in three potato clones revealed that these genes might have non-overlapping roles under different abiotic stress conditions and durations. The present study provides a comprehensive analysis of StSET genes in potatoes, and it serves as a basis for further functional characterisation of StSET genes towards understanding their underpinning biological mechanisms in conferring stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Estresse Fisiológico/genética , Duplicação Gênica , Domínios PR-SET/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Secas
11.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Células Cultivadas , Quimiocinas/metabolismo , Quimiocinas/genética , Citocinas/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Plant Biol (Stuttg) ; 26(5): 727-734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781082

RESUMO

Rapid accumulation of boron (B) leads to toxicity in plant tissues, and the narrow gap between deficiency and toxicity makes it difficult to adjust essential B levels in soil for plant productivity. Therefore, understanding different aspects of B tolerance is necessary to provide new and valid solutions to B toxicity. Gypsophila perfoliata stands out as a remarkable example of a B-tolerant plant, with a natural propensity to thrive in environments such as B mines and soils enriched with high levels of B. In this study, a yeast functional screening experiment was conducted using cDNA libraries from G. perfoliata leaf and root cells for B tolerance. Ten colonies from the leaf library grew in 80 mm boric acid, while none emerged from the root library. Analysis of isolated cDNAs showed identical sequences and a unique motif related to B tolerance. The gene GpEF1A was identified in the tolerant yeast colonies, with predicted structural features suggesting its role, and RT-qPCR indicating increased expression under B stress. A regulatory role for EF1A lysine methylation was proposed in mammalian cells and fungi because of its dynamic and inducible nature under environmental constraints. This could also be relevant for plant cells, as the high similarity of the GpEF1A gene in some salt-tolerant plants might indicate the upregulation of EF1A as a conserved way to cope with abiotic stress conditions. This report represents the first instance of involvement of GpEF1A in B tolerance, and further detailed studies are necessary to understand other components of this tolerance mechanism.


Assuntos
Boro , Caryophyllaceae , Homeostase , Boro/metabolismo , Boro/toxicidade , Caryophyllaceae/genética , Caryophyllaceae/metabolismo , Caryophyllaceae/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sequência de Aminoácidos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Biblioteca Gênica
13.
Mol Cell ; 84(9): 1753-1763.e7, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38508183

RESUMO

eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinogênese , Neoplasias Pulmonares , Fator 2 de Elongação de Peptídeos , RNA Mensageiro , Humanos , Animais , Metilação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Elongação Traducional da Cadeia Peptídica , Camundongos Nus , Processamento de Proteína Pós-Traducional , Feminino
14.
Crit Rev Biochem Mol Biol ; 59(1-2): 20-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449437

RESUMO

Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.


Assuntos
Histona-Lisina N-Metiltransferase , Simulação de Dinâmica Molecular , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Especificidade por Substrato , Metilação , Animais , Lisina/metabolismo , Lisina/química
15.
Mol Cancer ; 23(1): 60, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520019

RESUMO

BACKGROUND: Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS: LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS: LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS: Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Mama/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Paclitaxel/farmacologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Quinases Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
16.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396925

RESUMO

Lysine methylation is a major post-translational protein modification that occurs in both histones and non-histone proteins. Emerging studies show that the methylated lysine residues in non-histone proteins provide a proteolytic signal for ubiquitin-dependent proteolysis. The SET7 (SETD7) methyltransferase specifically transfers a methyl group from S-Adenosyl methionine to a specific lysine residue located in a methylation degron motif of a protein substrate to mark the methylated protein for ubiquitin-dependent proteolysis. LSD1 (Kdm1a) serves as a demethylase to dynamically remove the methyl group from the modified protein. The methylated lysine residue is specifically recognized by L3MBTL3, a methyl-lysine reader that contains the malignant brain tumor domain, to target the methylated proteins for proteolysis by the CRL4DCAF5 ubiquitin ligase complex. The methylated lysine residues are also recognized by PHF20L1 to protect the methylated proteins from proteolysis. The lysine methylation-mediated proteolysis regulates embryonic development, maintains pluripotency and self-renewal of embryonic stem cells and other stem cells such as neural stem cells and hematopoietic stem cells, and controls other biological processes. Dysregulation of the lysine methylation-dependent proteolysis is associated with various diseases, including cancers. Characterization of lysine methylation should reveal novel insights into how development and related diseases are regulated.


Assuntos
Neoplasias Encefálicas , Lisina , Humanos , Proteólise , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Ubiquitinas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Proteínas Cromossômicas não Histona/metabolismo
17.
Mol Neurobiol ; 61(9): 6245-6263, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38289455

RESUMO

Psychostimulants regulate behavioral responses in zebrafish via epigenetic mechanisms. We have previously shown that DNA methylation and histone deacetylase (HDAC) inhibition abolish nicotine-induced conditioned place preference (CPP) but little is known about the role of histone methylation in addictive-like behaviors. To assess the influence of histone methylation on nicotine-CPP, zebrafish were treated with a histone (H3) lysine-9 (K9) dimethyltransferase G9a/GLP inhibitor, BIX-01294 (BIX), which was administered before conditioning sessions. We observed a dual effect of the inhibitor BIX: at high doses inhibited while at low doses potentiated nicotine reward. Transcriptional expression of α6 and α7 subunits of the nicotinic acetylcholine receptor and of G9a, DNA methyl transferase-3, and HDAC-1 was upregulated in zebrafish with positive scores for nicotine-CPP. Changes in relative levels of these mRNA molecules reflected the effects of BIX on nicotine reward. BIX treatment per sé did not affect transcriptional levels of epigenetic enzymes that regulate trimethylation or demethylation of H3. BIX reduced H3K9me2 protein levels in a dose-dependent manner in key structures of the reward pathway. Thus, our findings indicated that different doses of BIX differentially affect nicotine CPP via strong or weak inhibition of G9a/GLP activity. Additionally, we found that the lysine demethylase inhibitor daminozide abolished nicotine-CPP and drug seeking. Our data demonstrate that H3 methylation catalyzed by G9a/GLP is involved in nicotine-CPP induction. Dimethylation of K9 at H3 is an important epigenetic modification that should be considered as a potential therapeutic target to treat nicotine reward and perhaps other drug addictions.


Assuntos
Histona-Lisina N-Metiltransferase , Nicotina , Peixe-Zebra , Animais , Nicotina/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Azepinas/farmacologia , Histonas/metabolismo , Recompensa , Quinazolinas/farmacologia , Receptores Nicotínicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Masculino
18.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257273

RESUMO

The immune system protects our body from bacteria, viruses, and toxins and removes malignant cells. Activation of immune cells requires the onset of a network of important signaling proteins. Methylation of these proteins affects their structure and biological function. Under stimulation, T cells, B cells, and other immune cells undergo activation, development, proliferation, differentiation, and manufacture of cytokines and antibodies. Methyltransferases alter the above processes and lead to diverse outcomes depending on the degree and type of methylation. In the previous two decades, methyltransferases have been reported to mediate a great variety of immune stages. Elucidating the roles of methylation in immunity not only contributes to understanding the immune mechanism but is helpful in the development of new immunotherapeutic strategies. Hence, we review herein the studies on methylation in immunity, aiming to provide ideas for new approaches.


Assuntos
Metiltransferases , Proteínas Metiltransferases , Anticorpos , Linfócitos B , Diferenciação Celular
19.
Protein Sci ; 33(2): e4897, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284488

RESUMO

The HEMK2 protein methyltransferase has been described as glutamine methyltransferase catalyzing ERF1-Q185me1 and lysine methyltransferase catalyzing H4K12me1. Methylation of two distinct target residues is unique for this class of enzymes. To understand the specific catalytic adaptations of HEMK2 allowing it to master this chemically challenging task, we conducted a detailed investigation of the substrate sequence specificities of HEMK2 for Q- and K-methylation. Our data show that HEMK2 prefers methylation of Q over K at peptide and protein level. Moreover, the ERF1 sequence is strongly preferred as substrate over the H4K12 sequence. With peptide SPOT array methylation experiments, we show that Q-methylation preferentially occurs in a G-Q-X3 -R context, while K-methylation prefers S/T at the first position of the motif. Based on this, we identified novel HEMK2 K-methylation peptide substrates with sequences taken from human proteins which are methylated with high activity. Since H4K12 methylation by HEMK2 was very low, other protein lysine methyltransferases were examined for their ability to methylate the H4K12 site. We show that SETD6 has a high H4K12me1 methylation activity (about 1000-times stronger than HEMK2) and this enzyme is mainly responsible for H4K12me1 in DU145 prostate cancer cells.


Assuntos
Glutamina , Lisina , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Humanos , Glutamina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Metilação , Peptídeos/química , Proteínas Metiltransferases/metabolismo , Especificidade por Substrato , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética
20.
Biochem Biophys Res Commun ; 695: 149400, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160530

RESUMO

SETD2 (SET-domain containing protein 2) is a histone methyltransferase (HMT) of the SET family responsible for the trimethylation of K36 of histone H3, thus producing the epigenetic mark H3K36me3. Recent studies have shown that certain SET family HMTs, such as SMYD2, SMYD3 or SETDB1 can also methylate protein kinases and therefore be involved in signaling pathways. Here we provide structural and enzymatic evidence showing that SETD2 methylates the protein tyrosine kinase ACK1 in vitro. ACK1 is recognized as a major integrator of signaling from various receptor tyrosine kinases. Using ACK1 peptides and recombinant proteins, we show that SETD2 methylates the K514 residue of ACK1 generating K514 mono, di or tri-methylation. Interestingly, K514 is found in a "H3K36-like" motif of ACK1 which is known to be post-translationally modified and to be involved in protein-protein interaction. The crystal structure of SETD2 catalytic domain in complex with an ACK1 peptide further provides the structural basis for the methylation of ACK1 K514 by SETD2. Our work therefore strongly suggests that ACK1 could be a novel non-histone substrate of SETD2 and further supports that SET HMTs, such as SETD2, could be involved in both epigenetic regulations and cell signaling.


Assuntos
Histonas , Proteínas Tirosina Quinases , Proteínas Tirosina Quinases/metabolismo , Histonas/metabolismo , Metilação , Histona-Lisina N-Metiltransferase/genética , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA