Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(3): 101313, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39282079

RESUMO

Mucopolysaccharidosis type IVB (MPSIVB) is a lysosomal storage disorder caused by ß-galactosidase (ß-GAL) deficiency characterized by severe skeletal and neurological alterations without approved treatments. To develop hematopoietic stem progenitor cell (HSPC) gene therapy (GT) for MPSIVB, we designed lentiviral vectors (LVs) encoding human ß-GAL to achieve supraphysiological release of the therapeutic enzyme in human HSPCs and metabolic correction of diseased cells. Transduced HSPCs displayed proper colony formation, proliferation, and differentiation capacity, but their progeny failed to release the enzyme at supraphysiological levels. Therefore, we tested alternative LVs to overexpress an enhanced ß-GAL deriving from murine (LV-enhGLB1) and human selectively mutated GLB1 sequences (LV-mutGLB1). Only human HSPCs transduced with LV-enhGLB1 overexpressed ß-GAL in vitro and in vivo without evidence of overexpression-related toxicity. Their hematopoietic progeny efficiently released ß-GAL, allowing the cross-correction of defective cells, including skeletal cells. We found that the low levels of human GLB1 mRNA in human hematopoietic cells and the improved stability of the enhanced ß-GAL contribute to the increased efficacy of LV-enhGLB1. Importantly, the enhanced ß-GAL enzyme showed physiological lysosomal trafficking in human cells and was not associated with increased immunogenicity in vitro. These results support the use of LV-enhGLB1 for further HSPC-GT development and future clinical translation to treat MPSIVB multisystem disease.

2.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096977

RESUMO

Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.


Assuntos
Endossomos , Antígenos de Histocompatibilidade Classe I , Imunoterapia , Lisossomos , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Lisossomos/metabolismo , Endossomos/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Animais , Transporte Proteico , Microambiente Tumoral/imunologia , Apresentação de Antígeno/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220388, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368932

RESUMO

Niemann-Pick type C (NPC) disease is a rare progressive lysosomal lipid storage disorder that manifests with a heterogeneous spectrum of clinical syndromes, including visceral, neurological and psychiatric symptoms. This monogenetic autosomal recessive disease is largely caused by mutations in the NPC1 gene, which controls intracellular lipid homeostasis. Vesicle-mediated endo-lysosomal lipid trafficking and non-vesicular lipid exchange via inter-organelle membrane contact sites are both regulated by the NPC1 protein. Loss of NPC1 function therefore triggers intracellular accumulation of diverse lipid species, including cholesterol, glycosphingolipids, sphingomyelin and sphingosine. The NPC1-mediated dysfunction of lipid transport has severe consequences for all brain cells, leading to neurodegeneration. Besides the cell-autonomous contribution of neuronal NPC1, aberrant NPC1 signalling in other brain cells is critical for the pathology. We discuss here the importance of endo-lysosomal dysfunction and a tight crosstalk between neurons, oligodendrocytes, astrocytes and microglia in NPC pathology. We strongly believe that a cell-specific rescue may not be sufficient to counteract the severity of the NPC pathology, but targeting common mechanisms, such as endo-lysosomal and lipid trafficking dysfunction, may ameliorate NPC pathology. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios , Colesterol/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia
5.
Angew Chem Int Ed Engl ; 62(18): e202301704, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36880808

RESUMO

To understand the function of protein in live cells, real-time monitoring of protein dynamics and sensing of their surrounding environment are important methods. Fluorescent labeling tools are thus needed that possess fast labeling kinetics, high efficiency, and long-term stability. We developed a versatile chemical protein-labeling tool based on fluorophore-conjugated diazabicyclooctane ß-lactamase inhibitors (BLIs) and wild-type TEM-1 ß-lactamase protein tag. The fluorescent probes efficiently formed a stable carbamoylated complex with ß-lactamase, and the labeled proteins were visualized over a long period of time in live cells. Moreover, use of an α-fluorinated carboxylate ester-based BLI prodrug enabled the probe to permeate cell membranes and stably label intracellular proteins after unexpected spontaneous ester hydrolysis. Lastly, combining the labeling tool with a pH-activatable fluorescent probe allowed visual monitoring of lysosomal protein translocation during autophagy.


Assuntos
Proteínas , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Coloração e Rotulagem , Proteínas/metabolismo , Corantes Fluorescentes , Penicilinas , Imagem Molecular/métodos
6.
Front Cell Infect Microbiol ; 13: 1336600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282619

RESUMO

Coxiella burnetii is an obligate intracellular bacterium that causes Q fever, a zoonotic disease typically manifests as a severe flu-illness. After invading into the host cells, C. burnetii delivers effectors to regulate the vesicle trafficking and fusion events to form a large and mature Coxiella-containing vacuole (CCV), providing sufficient space and nutrition for its intracellular growth and proliferation. Lysosomal trafficking regulator (LYST) is a member of the Beige and Chediak-Higashi syndrome (BEACH) family, which regulates the transport of vesicles to lysosomes and regulates TLR signaling pathway, but the effect of LYST on C. burnetii infection is unclear. In this study, a series of experiments has been conducted to investigate the influence of LYST on intracellular growth of C. burnetii. Our results showed that lyst transcription was up-regulated in the host cells after C. burnetii infection, but there is no significant change in lyst expression level after infection with the Dot/Icm type IV secretion system (T4SS) mutant strain, while CCVs expansion and significantly increasing load of C. burnetii appeared in the host cells with a silenced lyst gene, suggesting LYST inhibits the intracellular proliferation of C. burnetii by reducing CCVs size. Then, the size of CCVs and the load of C. burnetii in the HeLa cells pretreated with E-64d were significantly decreased. In addition, the level of iNOS was decreased significantly in LYST knockout THP-1 cells, which was conducive to the intracellular replication of C. burnetii. This data is consistent with the phenotype of L-NMMA-treated THP-1 cells infected with C. burnetii. Our results revealed that the upregulation of lyst transcription after infection is due to effector secretion of C. burnetii and LYST inhibit the intracellular replication of C. burnetii by reducing the size of CCVs and inducing nos2 expression.


Assuntos
Coxiella burnetii , Febre Q , Proteínas de Transporte Vesicular , Humanos , Coxiella burnetii/patogenicidade , Células HeLa , Interações Hospedeiro-Patógeno/genética , Lisossomos/metabolismo , Febre Q/microbiologia , Vacúolos/microbiologia , Células THP-1 , Proteínas de Transporte Vesicular/genética , Óxido Nítrico Sintase Tipo II/metabolismo
7.
Mol Microbiol ; 117(5): 1104-1120, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304930

RESUMO

The transcriptional network of Mycobacterium tuberculosis is designed to enable the organism to withstand host-associated stresses and to exploit the host milieu for its own survival and multiplication. Rv0081 (MT0088) is a transcriptional regulator whose interplay with other gene regulatory proteins and role in enabling M. tuberculosis to thrive within its host is incompletely understood. M. tuberculosis utilizes cholesterol within the granuloma. We show that deletion of Rv0081 compromises the ability of M. tuberculosis to utilize cholesterol as the sole carbon source, to subvert lysosomal trafficking, and to form granulomas in vitro. Rv0081 downregulates expression of the nucleoid-associated repressor Lsr2, leading to increased expression of the cholesterol catabolism-linked gene kshA and genes of the cholesterol importing operon, accounting for the requirement of Rv0081 in cholesterol utilization. Furthermore, Rv0081 activates EspR which is required for secretion of ESX-1 substrates, which in turn are involved in subversion of lysosomal trafficking of M. tuberculosis and granuloma expansion. These results provide new insight into the role of Rv0081 under conditions which resemble the environment encountered by M. tuberculosis within its host. Rv0081 emerges as a central regulator of genes linked to various pathways which are crucial for the survival of the bacterium in vivo.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/metabolismo , Tuberculose/microbiologia
8.
Wound Repair Regen ; 30(1): 82-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837653

RESUMO

Non-healing wounds are a major threat to public health throughout the United States. Tissue healing is complex multifactorial process that requires synchronicity of several cell types. Endolysosomal trafficking, which contributes to various cell functions from protein degradation to plasma membrane repair, is an understudied process in the context of wound healing. The lysosomal trafficking regulator protein (LYST) is an essential protein of the endolysosomal system through an indeterminate mechanism. In this study, we examine the impact of impaired LYST function both in vitro with primary LYST mutant fibroblasts as well as in vivo with an excisional wound model. The wound model shows that LYST mutant mice have impaired wound healing in the form of delayed epithelialization and collagen deposition, independent of macrophage infiltration and polarisation. We show that LYST mutation confers a deficit in MCP-1, IGF-1, and IGFBP-2 secretion in beige fibroblasts, which are critical factors in normal wound healing. Identifying the mechanism of LYST function is important for understanding normal wound biology, which may facilitate the development of strategies to address problem wound healing.


Assuntos
Lisossomos , Cicatrização , Animais , Colágeno , Fibroblastos , Camundongos , Reepitelização
9.
Cancer Res Treat ; 54(1): 182-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33781048

RESUMO

PURPOSE: The role of vacuolar protein sorting 34 (Vps34), an indispensable protein required for cell vesicular trafficking, in the biological behavior of hepatocellular carcinoma (HCC) has yet to be studied. MATERIALS AND METHODS: In the present study, the expression of Vps34 in HCC and the effect of Vps34 on HCC cell invasion was detected both in vivo and in vitro. Furthermore, by modulating the RILP and Rab11, which regulate juxtanuclear lysosome aggregation and recycling endosome respectively, the underlying mechanism was investigated. RESULTS: Vps34 was significantly decreased in HCC and negatively correlated with the HCC invasiveness both in vivo and in vitro. Moreover, Vps34 could promote lysosomal juxtanuclear accumulation, reduce the invasive ability of HCC cells via the Rab7-RILP pathway. In addition, the deficiency of Vps34 in HCC cells affected the endosome-lysosome system, resulting in enhanced Rab11 mediated endocytic recycling of cell surface receptor and increased invasion of HCC cells. CONCLUSION: Our study reveals that Vps34 acts as an invasion suppressor in HCC cells, and more importantly, the endosome-lysosome trafficking regulated by Vps34 has the potential to become a target pathway in HCC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , proteínas de unión al GTP Rab7/metabolismo
10.
Front Cell Dev Biol ; 9: 642625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996800

RESUMO

Activation of the epidermal growth factor receptor (EGFR) is crucial for development, tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with numerous diseases. EGFR ubiquitination and endosomal trafficking are key events that regulate the termination of EGFR signaling, but their underlying mechanisms remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation and prolonged downstream signaling. We further demonstrate that ZNRF1 and Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore, loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1) infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as a novel regulator of EGFR signaling, which together with CBL controls ligand-induced EGFR ubiquitination and lysosomal trafficking.

11.
Front Physiol ; 12: 626707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776791

RESUMO

Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve-muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.

12.
Front Microbiol ; 11: 572433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042081

RESUMO

Two-component systems (TCSs) are central to the ability of Mycobacterium tuberculosis to respond to stress. One such paired TCS is SenX3-RegX3, which responds to phosphate starvation. Here we show that RegX3 is required for M. tuberculosis to withstand low pH, one of the challenges encountered by the bacterium in the host environment, and that RegX3 activates the cytosolic redox sensor WhiB3 to launch an appropriate response to acid stress. We show that the whiB3 promoter of M. tuberculosis harbors a RegX3 binding motif. Electrophoretic mobility shift assays (EMSAs) show that phosphorylated RegX3 (RegX3-P) (but not its unphosphorylated counterpart) binds to this motif, whereas a DNA binding mutant, RegX3 (K204A) fails to do so. Mutation of the putative RegX3 binding motif on the whiB3 promoter, abrogates the binding of RegX3-P. The significance of this binding is established by demonstrating that the expression of whiB3 is significantly attenuated under phosphate starvation or under acid stress in the regX3-inactivated mutant, ΔregX3. Green fluorescent protein (GFP)-based reporter assays further confirm the requirement of RegX3 for the activation of the whiB3 promoter. The compromised survival of ΔregX3 under acid stress and its increased trafficking to the lysosomal compartment are reversed upon complementation with either regX3 or whiB3, suggesting that RegX3 exerts its effects in a WhiB3-dependent manner. Finally, using an in vitro granuloma model, we show that granuloma formation is compromised in the absence of regX3, but restored upon complementation with either regX3 or whiB3. Our findings provide insight into an important role of RegX3 in the network that regulates the survival of M. tuberculosis under acid stress similar to that encountered in its intracellular niche. Our results argue strongly in favor of a role of the RegX3-WhiB3 axis in establishment of M. tuberculosis infection.

13.
Autophagy ; 16(1): 167-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533518

RESUMO

Lysosomal degradation of protein aggregates and damaged organelles is essential for maintaining cellular homeostasis. This process in neurons is challenging due to their highly polarized architecture. While enzymatically active degradative lysosomes are enriched in the cell body, their trafficking and degradation capacity in axons remain elusive. We recently characterized the axonal delivery of degradative lysosomes by applying a set of fluorescent probes that selectively label active forms of lysosomal hydrolases on cortical neurons in microfluidic devices. We revealed that soma-derived degradative lysosomes rapidly influx into distal axons and target to autophagosomes and Parkinson disease-related SNCA/α-synuclein cargos for local degradation. Disrupting axon-targeted delivery of degradative lysosomes induces axonal autophagic stress. We demonstrate that the axon is an active compartment for local degradation, establishing a foundation for future investigations into axonal lysosome trafficking and functionality in neurodegenerative diseases and lysosomal storage disorders associated with axonal pathology and macroautophagy/autophagy stress.


Assuntos
Autofagia/fisiologia , Axônios/metabolismo , Homeostase/fisiologia , Lisossomos/metabolismo , Animais , Corpo Celular/metabolismo , Humanos , Neurônios/metabolismo
14.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661793

RESUMO

Vasopressin-dependent trafficking of AQP2 in the renal collecting duct is crucial for the regulation of water homeostasis. This process involves the targeting of AQP2 to the apical membrane during dehydration as well as its removal when hydration levels have been restored. The latter involves AQP2 endocytosis and sorting into multivesicular bodies (MVB), from where it may be recycled, degraded in lysosomes, or released into urine via exosomes. The lysosomal trafficking regulator-interacting protein 5 (LIP5) plays a crucial role in this by coordinating the actions of the endosomal sorting complex required for transport III (ESCRT-III) and vacuolar protein sorting 4 (Vps4) ATPase, resulting in the insertion of AQP2 into MVB inner vesicles. While the interaction between LIP5 and the ESCRT-III complex and Vps4 is well characterized, very little is known about how LIP5 interacts with AQP2 or any other membrane protein cargo. Here, we use a combination of fluorescence spectroscopy and computer modeling to provide a structural model of how LIP5 interacts with human AQP2. We demonstrate that, the AQP2 tetramer binds up to two LIP5 molecules and that the interaction is similar to that seen in the complex between LIP5 and the ESCRT-III component, charged multivesicular body protein 1B (CHMP1B). These studies give the very first structural insights into how LIP5 enables membrane protein insertion into MVB inner vesicles and significantly increase our understanding of the AQP2 trafficking mechanism.


Assuntos
Aquaporina 2/química , Aquaporina 2/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Aquaporina 2/genética , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Simulação de Acoplamento Molecular , Multimerização Proteica/genética , Transporte Proteico/fisiologia , Espectrometria de Fluorescência , ATPases Vacuolares Próton-Translocadoras/metabolismo
15.
Cell Rep ; 28(1): 51-64.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269450

RESUMO

Neurons face the challenge of maintaining cellular homeostasis through lysosomal degradation. While enzymatically active degradative lysosomes are enriched in the soma, their axonal trafficking and positioning and impact on axonal physiology remain elusive. Here, we characterized axon-targeted delivery of degradative lysosomes by applying fluorescent probes that selectively label active forms of lysosomal cathepsins D, B, L, and GCase. By time-lapse imaging of cortical neurons in microfluidic devices and standard dishes, we reveal that soma-derived degradative lysosomes rapidly influx into distal axons and target to autophagosomes and Parkinson disease-related α-synuclein cargos for local degradation. Impairing lysosome axonal delivery induces an aberrant accumulation of autophagosomes and α-synuclein cargos in distal axons. Our study demonstrates that the axon is an active compartment for local degradation and reveals fundamental aspects of axonal lysosomal delivery and maintenance. Our work establishes a foundation for investigations into axonal lysosome trafficking and functionality in neurodegenerative diseases.


Assuntos
Autofagossomos/enzimologia , Transporte Axonal/genética , Axônios/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/genética , Autofagia/fisiologia , Transporte Axonal/fisiologia , Axônios/enzimologia , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Feminino , Gânglios Espinais/enzimologia , Gânglios Espinais/metabolismo , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Células HEK293 , Homeostase/genética , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/enzimologia , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , alfa-Sinucleína/metabolismo
16.
J Biol Chem ; 294(20): 8023-8036, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30936203

RESUMO

G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CXC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CXC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation. Our results demonstrate that direct activation of PKC via the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal trafficking of CXCR4. In agreement, heterologous activation of PKC by stimulating the chemokine receptor CXCR5 with its ligand, CXCL13, also mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal degradation of CXCR4. Similar to CXCL12, PMA promotes PKC-dependent phosphorylation of serine residues within CXCR4 C-tail that are required for binding and ubiquitination by the E3 ubiquitin ligase AIP4 (atrophin-interacting protein 4). However, inhibition of PKC activity does not alter CXCL12-mediated ubiquitination and degradation of CXCR4, suggesting that other kinases are also required. Accordingly, siRNA-mediated depletion of GRK6 results in decreased degradation and ubiquitination of CXCR4. Overall, these results suggest that PKC and GRK6 contribute to unique aspects of CXCR4 phosphorylation and lysosomal degradation to ensure proper signal propagation and termination.


Assuntos
Lisossomos/metabolismo , Proteólise , Receptores CXCR4/metabolismo , Transdução de Sinais , Ubiquitinação , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores CXCR4/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Autophagy ; 15(8): 1407-1418, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30806144

RESUMO

Mutations in the γ-secretase complex are strongly associated with familial Alzheimer disease. Both proteolytic and non-proteolytic functions for the γ-secretase complex have been previously described in mammalian model organisms, but their relative contributions to disease pathology remain unclear. Here, we dissect the roles of orthologs of the γ-secretase components in the model system Dictyostelium, focusing on endocytosis, lysosomal activity and autophagy. In this model, we show that the orthologs of PSEN (psenA and psenB), Ncstn (nicastrin) and Aph-1 (gamma-secretase subunit Aph-1), are necessary for optimal fluid-phase uptake by macropinocytosis and in multicellular development under basic pH conditions. Disruption of either psenA/B or Aph-1 proteins also leads to disrupted phagosomal proteolysis as well as decreased autophagosomal acidification and autophagic flux. This indicates a general defect in lysosomal trafficking and degradation, which we show leads to the accumulation of ubiquitinated protein aggregates in cells lacking psenA/B and Aph-1 proteins. Importantly, we find that all the endocytic defects observed in Dictyostelium PSEN ortholog mutants can be fully rescued by proteolytically inactive Dictyostelium psenB and human PSEN1 proteins. Our data therefore demonstrates an evolutionarily conserved non-proteolytic role for presenilin, and γ-secretase component orthologs, in maintaining Dictyostelium lysosomal trafficking and autophagy. Abbreviations: Atg8: autophagy protein 8a; Aph-1: gamma-secretase subunit Aph-1; crtA: calreticulin; ER: endoplasmic reticulum; GFP: green fluorescent protein; GSK3B: glycogen synthase kinase 3 beta; Ncstn: nicastrin; PSEN1: presenilin 1; psenA and psenB: Dictyostelium presenilin A and B; TRITC; tetramethylrhodamine isothiocyanate.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Autofagia , Dictyostelium/metabolismo , Lisossomos/metabolismo , Presenilinas/metabolismo , Proteólise , Homologia de Sequência de Aminoácidos , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Mutação/genética , Ubiquitina/metabolismo , Ubiquitinação
18.
JDR Clin Trans Res ; 3(1): 35-46, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29276776

RESUMO

Chédiak-Higashi syndrome (CHS), a rare autosomal recessive disorder caused by mutations in the lysosomal trafficking regulator gene (LYST), is associated with aggressive periodontitis. It is suggested that LYST mutations affect the toll-like receptor (TLR)-mediated immunoinflammatory response, leading to frequent infections. This study sought to determine the periodontal status of patients with classic (severe) and atypical (milder) forms of CHS and the immunoregulatory functions of gingival fibroblasts in CHS patients. In contrast to aged-matched healthy controls, atypical (n = 4) and classic (n = 3) CHS patients presented with mild chronic periodontitis with no evidence of gingival ulceration, severe tooth mobility, or premature exfoliation of teeth. As a standard of care, all classic CHS patients had undergone bone marrow transplantation (BMT). Primary gingival fibroblasts obtained from atypical and BMT classic CHS patients displayed higher protein expression of TLR-2 (1.81-fold and 1.56-fold, respectively) and decreased expression of TLR-4 (-2.5-fold and -3.85-fold, respectively) at baseline when compared with healthy control gingival fibroblasts. When challenged with whole bacterial extract of Fusobacterium nucleatum, both atypical and classic CHS gingival fibroblasts failed to up-regulate TLR-2 and TLR-4 expression when compared with their respective untreated groups and control cells. Cytokine multiplex analysis following F. nucleatum challenge showed that atypical CHS gingival fibroblasts featured significantly increased cytokine expression (interleukin [IL]-2, IL-4, IL-5, IL-6, IL-10, IL-12, interferon-γ, tumor necrosis factor-α), whereas classic CHS cells featured similar/decreased cytokine expression when compared with treated control cells. Collectively, these results suggest that LYST mutations in CHS patients affect TLR-2 and TLR-4 expression/function, leading to dysregulated immunoinflammatory response, which in turn may influence the periodontal phenotype noted in CHS patients. Furthermore, our results suggest that atypical CHS patients and classic CHS patients who undergo BMT early in life are less susceptible to aggressive periodontitis and that hematopoietic cells play a critical role in mitigating the risk of aggressive periodontitis in CHS. Knowledge Transfer Statement: Results from this study can be used to create awareness among clinicians and researchers that not all CHS patients exhibit historically reported aggressive periodontitis, especially if they have atypical CHS disease or have received bone marrow transplantation. LYST mutations in CHS patients may affect TLR-2 and TLR-4 expression/function leading to dysregulated immunoinflammatory response, which in turn may influence the periodontal phenotype noted in CHS patients.

19.
J Innate Immun ; 10(1): 56-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29176319

RESUMO

Signaling by the interleukin-36 receptor (IL-36R) is linked to inflammatory diseases such as psoriasis. However, the regulation of IL-36R signaling is poorly understood. Activation of IL-36R signaling in cultured cells results in an increased polyubiquitination of the receptor subunit, IL-1Rrp2. Treatment with deubiquitinases shows that the receptor subunit of IL-36R, IL-1Rrp2, is primarily polyubiquitinated at the K63 position, which is associated with endocytic trafficking and signal transduction. A minor amount of ubiquitination is at the K48 position that is associated with protein degradation. A focused siRNA screen identified RNF125, an E3 ubiquitin ligase, to ubiquitinate IL-1Rrp2 upon activation of IL-36R signaling while not affecting the activated IL-1 receptor. Knockdown of RNF125 decreases signal transduction by the IL-36R. Overexpression of RNF125 in HEK293T cells activates IL-36R signaling and increases the ubiquitination of IL-1Rrp2 and its subsequent turnover. RNF125 can coimmunoprecipitate with the IL-36R, and it traffics with IL-1Rrp2 from the cell surface to lysosomes. Mutations of Lys568 and Lys569 in the C-terminal tail of IL-1Rrp2 decrease ubiquitination by RNF125 and increase the steady-state levels of IL-1Rrp2. These results demonstrate that RNF125 has multiple regulatory roles in the signaling, trafficking, and turnover of the IL-36R.


Assuntos
Inflamação/imunologia , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Lisossomos/metabolismo , Psoríase/imunologia , Receptores de Interleucina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Endocitose , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-18/genética , Mutação/genética , Transporte Proteico , RNA Interferente Pequeno/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
J Allergy Clin Immunol ; 142(3): 914-927.e6, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29241728

RESUMO

BACKGROUND: Chediak-Higashi syndrome (CHS) is a rare disorder caused by biallelic mutations in the lysosomal trafficking regulator gene (LYST), resulting in formation of giant lysosomes or lysosome-related organelles in several cell types. The disease is characterized by immunodeficiency and a fatal hemophagocytic lymphohistiocytosis caused by impaired function of cytotoxic lymphocytes, including natural killer (NK) cells. OBJECTIVE: We sought to determine the underlying biochemical cause of the impaired cytotoxicity of NK cells in patients with CHS. METHODS: We generated a human cell model of CHS using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. We used a combination of classical techniques to evaluate lysosomal function and cell activity in the model system and super-resolution microscopy to visualize F-actin and lytic granules in normal and LYST-deficient NK cells. RESULTS: Loss of LYST function in a human NK cell line, NK92mi, resulted in inhibition of NK cell cytotoxicity and reproduced other aspects of the CHS cellular phenotype, including the presence of significantly enlarged lytic granules with defective exocytosis and impaired integrity of endolysosomal compartments. The large granules had an acidic pH and normal activity of lysosomal enzymes and were positive for the proteins essential for lytic granule exocytosis. Visualization of the actin meshwork openings at the immunologic synapse revealed that the cortical actin acts as a barrier for secretion of such large granules at the cell-cell contact site. Decreasing the cortical actin density at the immunologic synapse or decreasing the lytic granule size restored the ability of LYST-deficient NK cells to degranulate and kill target cells. CONCLUSION: The cortical actin and granule size play significant roles in NK cell cytotoxic function. We present evidence that the periodicity of subsynaptic actin is an important factor limiting the release of large lytic granules from NK cells from patients with CHS and could be a novel target for pharmaceutical intervention.


Assuntos
Actinas/imunologia , Síndrome de Chediak-Higashi/imunologia , Grânulos Citoplasmáticos/imunologia , Células Matadoras Naturais/imunologia , Linhagem Celular , Citoesqueleto/imunologia , Humanos , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA