Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 111(3): 509-528, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412861

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Genes Dis ; 10(1): 165-174, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013028

RESUMO

The mRNA polyadenylation plays essential function in regulation of mRNA metabolism. Mis-regulations of mRNA polyadenylation are frequently linked with aberrant gene expression and disease progression. Under the action of polyadenylate polymerase, poly(A) tail is synthesized after the polyadenylation signal (PAS) sites on the mRNAs. Alternative polyadenylation (APA) often occurs in mRNAs with multiple poly(A) sites, producing different 3' ends for transcript variants, and therefore plays important functions in gene expression regulation. In this review, we first summarize the classical process of mRNA 3'-terminal formation and discuss the length control mechanisms of poly(A) in nucleus and cytoplasm. Then we review the research progress on alternative polyadenylation regulation and the APA site selection mechanism. Finally, we summarize the functional roles of APA in the regulation of gene expression and diseases including cancers.

3.
Methods Enzymol ; 655: 165-184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183120

RESUMO

The ability to generate cell-type specific mRNA polyadenylation (pA) maps from complex tissues is crucial for understanding how alternative polyadenylation (APA) is regulated in individual cell types in their physiological environment under different conditions. In this chapter, we discuss cTag-PAPERCLIP, a recently developed method combining the well-established CLIP (crosslinking immunoprecipitation) technique and the Cre-lox system to achieve customized cell-type specific APA profiling from mouse tissue without cell purification or enrichment. In cTag-PAPERCLIP, selective expression of GFP-tagged poly(A) binding protein (PABP-GFP) in the desired cell type is achieved through Cre-mediated activation of a latent knock-in allele of PABP-GFP. Immunoprecipitation of PABP-GFP then allows mRNA 3' end fragments in the desired cell type to be specifically retrieved from ultraviolet (UV)-irradiated whole tissue lysate. The mRNA fragments are subsequently turned into a cDNA library to provide a comprehensive APA map and an mRNA expression profile of the chosen cell type through deep sequencing.


Assuntos
Poliadenilação , Estabilidade de RNA , Regiões 3' não Traduzidas , Animais , Biblioteca Gênica , Imunoprecipitação , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
RNA Biol ; 18(11): 1512-1523, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33416026

RESUMO

U1 snRNP is one of the most abundant ribonucleoprotein (RNP) complexes in eukaryotic cells and is estimated to be approximately 1 million copies per cell. Apart from its canonical role in mRNA splicing, this complex has emerged as a key regulator of eukaryotic mRNA length via inhibition of mRNA 3'-end processing at numerous intronic polyadenylation sites, in a process that is also termed 'U1 snRNP telescripting'. Several reviews have extensively described the concept of U1 telescripting and subsequently highlighted its potential impacts in mRNA metabolism. Here, we review what is currently known regarding the underlying mechanisms of this important phenomenon and discuss open questions and future challenges.


Assuntos
Poliadenilação , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Humanos , Precursores de RNA/genética , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U1/genética
5.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575604

RESUMO

The study of oocytes has made enormous contributions to the understanding of the G2/M transition. The complementarity of investigations carried out on various model organisms has led to the identification of the M-phase promoting factor (MPF) and to unravel the basis of cell cycle regulation. Thanks to the power of biochemical approaches offered by frog oocytes, this model has allowed to identify the core signaling components involved in the regulation of M-phase. A central emerging layer of regulation of cell division regards protein translation. Oocytes are a unique model to tackle this question as they accumulate large quantities of dormant mRNAs to be used during meiosis resumption and progression, as well as the cell divisions during early embryogenesis. Since these events occur in the absence of transcription, they require cascades of successive unmasking, translation, and discarding of these mRNAs, implying a fine regulation of the timing of specific translation. In the last years, the Xenopus genome has been sequenced and annotated, enabling the development of omics techniques in this model and starting its transition into the genomic era. This review has critically described how the different phases of meiosis are orchestrated by changes in gene expression. The physiological states of the oocyte have been described together with the molecular mechanisms that control the critical transitions during meiosis progression, highlighting the connection between translation control and meiosis dynamics.


Assuntos
Meiose/genética , Oócitos/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genômica , Meiose/fisiologia , Transdução de Sinais/fisiologia
6.
J Proteome Res ; 17(4): 1474-1484, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29558158

RESUMO

Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/química , RNA Mensageiro/antagonistas & inibidores , Proteínas não Estruturais Virais/farmacologia , Animais , Fator de Especificidade de Clivagem e Poliadenilação , Interações entre Hospedeiro e Microrganismos , Humanos , Immunoblotting , Imunoprecipitação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Ligação Proteica , Fatores de Poliadenilação e Clivagem de mRNA
7.
Methods Mol Biol ; 1648: 79-93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28766291

RESUMO

We discuss a newly developed method to profile mRNA polyadenylation (pA) sites in an unbiased manner, PAPERCLIP (Poly(A) binding Protein-mediated mRNA 3'End Retrieval by CrossLinking ImmunoPrecipitation). Based on the well-established CLIP (crosslinking immunoprecipitation) technique, PAPERCLIP utilizes the poly(A) binding protein (PABP) as a biological filter to selectively retrieve mRNA 3' end fragments by immunoprecipitation from ultraviolet (UV) irradiated tissues or cultured cells. The mRNA fragments are subsequently extracted from the immunoprecipitated PABP:RNA complexes to generate a cDNA library, which goes through two rounds of purification before the final amplification by real-time polymerase chain reaction (PCR). The amplified cDNA library can then be read out by high-throughput sequencing to generate a transcriptomic profile and comprehensive alternative poly(A) (APA) site map from intact tissue or cultured cells.


Assuntos
Biblioteca Gênica , Imunoprecipitação/métodos , Proteínas de Ligação a Poli(A)/química , Reação em Cadeia da Polimerase/métodos , Sinais de Poliadenilação na Ponta 3' do RNA , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Animais , Humanos , RNA Mensageiro/metabolismo
8.
RNA ; 23(4): 473-482, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096519

RESUMO

The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.


Assuntos
Poli A/genética , Proteína I de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/genética , Polinucleotídeo Adenililtransferase/genética , Precursores de RNA/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Poli A/biossíntese , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidade da Espécie , Especificidade por Substrato
9.
Bioinformation ; 10(8): 512-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258487

RESUMO

Human lymphatic filariasis (HLF) is a neglected tropical disease which threatens nearly 1.4 billion people in 73 countries worldwide. Wuchereria bancrofti is the major causative agent of HLF and it closely resembles cattle filarial parasite Setaria digitata. Due to difficulties in procuring W. bancrofti parasite material, S. digitata cDNA library has been constructed to identify novel drug targets against HLF and many of the cDNA sequences are yet to be assigned structure and function. In this study, a 549 bp long cDNA (sdrbp) has been sequenced and characterized in silico. The shortest ORF of 249 bp from the isolated cDNA encodes a polypeptide of 82 amino acids and shows an amino acid identity of 54% with the RRM domain of human cleavage stimulation factor-64 kDa subunit (CstF-64). Structure of the protein (sdRBP) obtained by homology modelling using RRM of CstF-64 as template adopts classical RRM topology (ß1α1ß2ß3α2ß4). sdRBP model built was validated by superimposition tools and Ramachandran plot analysis. CstF-64 plays an important role in pre-mRNA polyadenylation by interacting with specific GU-rich downstream sequence element. Molecular docking studies of sdRBP with different RNA molecules revealed that sdRBP has greater binding affinity to GU-rich RNA and comparable results were obtained upon similar docking of RRM of CstF-64 with the same RNA molecules. Therefore, sdRBP is likely to perform homologous function in S. digitata. This study brings new dimensions to the functional analysis of RNA binding proteins of S. digitata and their evaluation as new drug targets against HLF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA