Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.215
Filtrar
1.
Heliyon ; 10(19): e38026, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39386884

RESUMO

Objective: Resistin (RETN) is an adipocyte-specific hormone that participates in metabolism and modulates cellular inflammation. Our study aimed to assess the effects of RETN treatment on autophagy and the underlying molecular and biological mechanisms in bovine alveolar macrophages (BAMs). Methods: The optimal concentration of RETN + lipopolysaccharide (LPS) on macrophages was screened and then used to co-culture with alveolar macrophages. Autophagosomes in BAMs were examined using a transmission electron microscope (TEM). Quantitative real-time PCR (qRT-PCR) was used to detect the mRNA expression of microtubule-associated protein light chain 3 (LC3) and p62. Western blot (WB) was used to detect the protein expressions of LC3 and p62. The distribution of LC3 and p62 proteins in the cells was observed by immunofluorescence (IF). The concentrations of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were detected using enzyme-linked immunosorbent assay (ELISA). The protein expression of adenosine-monophosphate-activated protein kinase (AMPK), p-AMPK, mammalian target of rapamycin (mTOR), and p-mTOR was detected using WB. Results: The treatment of BAMs with RETN or LPS increased the number of autophagosomes and the ratio of LC3II/LC3I and decreased the expression level of p62 protein. RETN treatment significantly triggered autophagy compared to LPS treatment. Moreover, the ratios of p-AMPK/AMPK and p-mTOR/mTOR were upregulated and downregulated, respectively, after RETN treatment, suggesting that AMPK/mTOR signaling pathway activation is required for RETN-mediated autophagy in BAMs. Additionally, the ratio of LC3-II/LC3-I was lower, and the concentrations of IL-1ß, IL-6, and TNF-α significantly decreased in the LPS and RETN co-treatment groups compared to the single LPS treatment group. However, both autophagy- and LPS-induced inflammation were partially alleviated by RETN treatment. Conclusion: RETN can promote autophagy in BAMs by activating the AMPK/mTOR signaling pathway, it may help prevent LPS-induced inflammation.

2.
Mater Today Bio ; 29: 101261, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39381262

RESUMO

The migration and differentiation of bone marrow mesenchymal stem cells (BMSCs) play crucial roles in bone repair processes. However, conventional scaffolds often lack of effectively inducing and recruiting BMSCs. In our study, we present a novel approach by introducing a 3D-bioprinted scaffold composed of hydrogels, with the addition of laponite to the GelMA solution, aimed at enhancing scaffold performance. Both in vivo and in vitro experiments have confirmed the outstanding biocompatibility of the scaffold. Furthermore, for the first time, Apt19s has been chemically modified onto the surface of the hydrogel scaffold, resulting in a remarkable enhancement in the migration and adhesion of BMSCs. Moreover, the scaffold has demonstrated robust osteogenic differentiation capability in both in vivo and in vitro environments. Additionally, the hydrogel scaffold has shown the ability to induce the polarization of macrophages from M1 to M2, thereby facilitating the osteogenic differentiation of BMSCs via the bone immune pathway. Through RNA-seq analysis, it has been revealed that macrophages regulate the osteogenic differentiation of BMSCs through the AMPK/mTOR signaling pathway. In summary, the functionalized GelMA/Laponite scaffold offers a cost-effective approach for tailored in situ bone regeneration.

3.
Reprod Toxicol ; : 108731, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39401686

RESUMO

In utero exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can contribute to high rates of cleft palate (CP) formation, but the mechanistic basis for these effects remains uncertain. Here, multi-omics-based metabolomic and transcriptomic analyses were employed to characterize the etiological basis for TCDD-induced CP on gestational day 14.5 (GD14.5). These analyses revealed that TCDD-induced CP formation is associated with calcium, MAPK, PI3K-Akt, and mTOR pathway signaling. PI3K-Akt and mTOR signaling activity is closely linked with the maintenance of cellular proliferation and survival. Moreover, mTOR-mediated regulation of autophagic activity is essential for ensuring an appropriate balance between metabolic activity and growth. Murine embryonic palatal mesenchymal (MEPM) cell proliferation was thus characterized, autophagic activity in these cells was evaluated through electron microscopy and western immunoblotting was used to compare the levels of autophagy- and AKT/mTOR-related protein between the control and TCDD groups on GD14.5. These analyses indicated that MEPM cell proliferative and autophagic activity was inhibited in response to TCDD exposure with the concomitant activation of AKT/mTOR signaling, in line with the multi-omics data. Together, these findings suggested that following TCDD exposure, the activation of AKT/mTOR-related autophagic signaling may play a role in the loss of appropriate palatal cell homeostasis, culminating in the incidence of CP.

4.
J Med Food ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388119

RESUMO

Skeletal muscle atrophy refers to the loss of muscle strength and mass due to decreased protein synthesis or increased protein degradation. Various conditions can cause muscle atrophy, including aging, heart disease, chronic illness, obstructive pulmonary disease, kidney failure, diabetes, AIDS, cancer, sepsis, and steroid use. Various natural materials have been studied for the prevention of muscle atrophy. In this study, we found that extracts from the sprouts of purple wheat, Arriheuk, prevented muscle atrophy in vitro and in vivo. Arriheuk wheat sprouts extract inhibited the expression of muscle protein breakdown factors, which were increased by dexamethasone, and improved muscle strength. In C2C12 myotubes, Arriheuk wheat sprout extract (ARE) protected against dexamethasone-induced muscle atrophy by potentiating Akt/mammalian target of rapamycin and AMP-activated protein kinase (AMPK)/forkhead box O3 (AMPK/Foxo3) signaling and inhibiting the expression of Atrogin-1, muscle RING-finger protein-1 (MuRF1), and Myostatin. In addition, the administration of ARE in an animal model of muscle atrophy induced by dexamethasone prevented myocardial and muscle strength loss by regulating the expression of muscle atrophy-related factors by affecting AMPK/Foxo3 signaling. Taken together, these results suggest that Arriheuk wheat sprouts extract effectively alleviates muscle atrophy by regulating the synthesis and breakdown of muscle proteins.

5.
Cell Signal ; : 111464, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396564

RESUMO

Environmental-gene interactions significantly influence various bodily functions. Enriched environment (EE), a non-pharmacological treatment method, enhances angiogenesis in ischemic stroke (IS). However, underlying the role of EE in angiogenesis in aged mice post-IS remain unclear. This study aimed to determine the potential mechanism by which EE mediates angiogenesis in 12-month-old IS mice and oxygen-glucose deprivation/reperfusion (OGD/R)-induced bEnd.3 cells. In vivo, EE treatment alleviated the neurological deficits, enhanced angiogenesis, upregulated SDF-1, VEGFA, and the AKT/mTOR pathway. In addition, exogenous SDF-1 treatment had a protective effect similar to that of EE treatment in aged mice with IS. However, SDF-1 neutralizing antibody, AMD3100 (CXCR4 inhibitor), ARQ092 (AKT inhibitor), and rapamycin (mTOR inhibitor) treatment blocked the neuroprotective effect of EE treatment and inhibited angiogenesis in IS mice. In vitro, exogenous SDF-1 promoted migration of OGD/R-induced bEnd.3 cells and activated the AKT/mTOR pathway. AMD3100, ARQ092, and rapamycin inhibited SDF-1-induced cell migration. Collectively, these findings demonstrate that EE enhances angiogenesis and improves the IS outcomes through SDF-1/CXCR4/AKT/mTOR pathway.

6.
Diagnostics (Basel) ; 14(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39410536

RESUMO

Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.

7.
Chin Med ; 19(1): 131, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327620

RESUMO

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) has been extensively utilized to treat traumatic brain injury (TBI). However, the bioactive compounds and the underlying mechanisms have not yet been elucidated. OBJECTIVES: This study aimed to investigate the bioactive constituents of XFYZD that are absorbed in the blood and the mechanisms in treating TBI. METHODS: The study presents an integrated strategy in three steps to investigate the material basis and pharmacological mechanisms of XFZYD. The first step involves: (1) performing metabolomics analysis of XFZYD to obtain the main functions and targets; (2) screening the blood-entry ingredients and targets of XFZYD from databases; (3) obtaining the potential components targeting the key functions by integrated analysis of metabolomics and network pharmacology. The second step involves screening pharmacological effects with active ingredients in vitro. In the third step, the effects of the top active compound were validated in vivo, and the mechanisms were explored by protein antagonist experiments. RESULTS: Metabolomics analysis revealed that XFZYD treated TBI mice mainly through affecting the functions of blood vessels. We screened 62 blood-entry ingredients of XFZYD by network pharmacology. Then, we focused on 39 blood-entry ingredients related to vascular genes enriched by XFZYD-responsive metabolites. Performing the natural products library, we verified that hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances promoted endothelial cell proliferation significantly compared to the control group. Among them, the efficacy of HSYA was superior. Further animal studies demonstrated that HSYA treatment alleviated neurological dysfunction in TBI mice by mNSS and foot fault test, and decreased neuronal damage by HE, nissl, and TUNEL staining. HSYA increased the density of cerebral microvessels, raised the expression of angiogenesis marker proteins VEGFA and CD34, and activated the PI3K/Akt/mTOR signaling pathway significantly. The angiogenic effects disappeared after the intervention of PI3K antagonist LY294002. CONCLUSION: By applying a novel strategy of integrating network pharmacology of constituents absorbed in blood with metabolomics, the research screened HSYA as one of the top bioactive constituents of XFZYD, which stimulates angiogenesis by activating the PI3K/Akt/mTOR signaling pathway after TBI.

8.
Front Biosci (Landmark Ed) ; 29(9): 324, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39344320

RESUMO

BACKGROUND: Isoflurane is a commonly used general anesthetic widely employed in clinical surgeries. Recent studies have indicated that isoflurane might induce negative impacts on the nervous system, notably by triggering neuronal apoptosis. This process is pivotal to the development and emergence of neurological disorders; its misregulation could result in functional deficits and the initiation of diseases within nervous system. However, the potential molecular mechanism of isoflurane on the neuronal apoptosis remains fully unexplored. This study aims to investigate the regulatory role of the sirtuin 1-mechanistic target of rapamycin (SIRT1-mTOR) signaling pathway in autophagy during isoflurane-induced apoptosis of fetal rat brain neuronal cells. METHODS: Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, real-time quantitative polymerase chain reaction (qPCR), and Western blot were utilized to evaluate the apoptotic status of hippocampal tissue cells in fetal mice after sevoflurane exposure. Our further investigation was commenced with flow cytometry, immunofluorescence, qPCR, and Western blot to determine the impact of autophagy on sevoflurane-induced apoptosis in these neurons. On the other hand, we conducted an additional set of analyses, including flow cytometric analysis, qPCR, and Western blot, to further elucidate the neuroprotective potential of autophagy in neural cells of fetal mice subjected to sevoflurane-induced apoptosis. RESULTS: Our findings indicated that a 3% sevoflurane treatment led to a significant rise in apoptosis among fetal rat hippocampal tissue cells and neurons. Levels of apoptosis-associated proteins, cleaved-caspase-3 and Bcl-2 associated X protein (Bax), were found to be markedly higher, coinciding with an enhancement in autophagy as evidenced by increased microtubule-associated proteins 1A/1B-light chain 3 (LC3) and decreased p62 expression. Concurrently, there was a notable up-regulation of sirtuin 1 (SIRT1) and a down-regulation of mechanistic target of rapamycin (mTOR) expression. In conclusion, our research elucidated the pivotal function of cellular autophagy in an apoptosis induced by sevoflurane in fetal rat nerve cells. Through experimental manipulation, we observed that interference with SIRT1 resulted in a reduction of both cleaved-caspase-3 and Bax levels. This intervention also beget a diminished expression of the autophagy-associated factor LC3 and an up-regulation of p62. Furthermore, inhibition against mTOR reversed the effects induced by SIRT1 interference, suggesting a complex interplay amid these regulatory pathways. CONCLUSIONS: SIRT1 possesses a capacity to modulate apoptosis in the hippocampal neurons of fetal rats triggered by sevoflurane, with mTOR functioning as an inhibitory factor within this signaling pathway.


Assuntos
Apoptose , Autofagia , Neurônios , Ratos Sprague-Dawley , Sevoflurano , Transdução de Sinais , Sirtuína 1 , Serina-Treonina Quinases TOR , Animais , Sevoflurano/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/citologia , Feminino , Anestésicos Inalatórios/farmacologia , Gravidez
10.
Biomolecules ; 14(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39334906

RESUMO

Epithelial ovarian carcinoma poses a significant challenge due to its resistance to chemotherapy and propensity for metastasis, thereby reducing the effectiveness of conventional treatments. Hence, the identification of novel compounds capable of augmenting the anti-cancer efficacy of platinum-based chemotherapy is imperative. Oxyresveratrol (OXY), a derivative of resveratrol, has been demonstrated to possess antiproliferative and apoptosis-inducing effects across various cancer cell lines. Notably, OXY appears to exert its effects by inhibiting the PI3K/AKT/mTOR signaling pathway. However, the synergistic potential of OXY in combination with cisplatin against epithelial ovarian cancer has not yet been elucidated. The current study investigated the synergistic effects of OXY and cisplatin on the ovarian cancer cell lines SKOV3 and TOV21G. We found that OXY significantly enhanced cisplatin's ability to reduce cell viability, induce apoptosis, induce cell cycle arrest, and increase the proportion of cells in the sub-G1 phase. Furthermore, OXY treatment alone dose-dependently inhibited the production of anti-apoptotic proteins including Mcl-1, Bcl-xL, and XIAP under EGF activation. Mechanistically, OXY suppressed the PI3K/AKT/mTOR signaling pathway by reducing phosphorylated AKT, while having no discernible effect on the MAPK pathway. These findings highlight OXY's potential to enhance ovarian cancer cell sensitivity to chemotherapy, suggesting its development as a pharmaceutical adjunct for clinical use in combination therapies.


Assuntos
Apoptose , Carcinoma Epitelial do Ovário , Cisplatino , Sinergismo Farmacológico , Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Estilbenos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cisplatino/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Apoptose/efeitos dos fármacos , Estilbenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Extratos Vegetais
11.
Front Immunol ; 15: 1420463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308869

RESUMO

With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , SARS-CoV-2 , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , COVID-19/terapia , COVID-19/imunologia , Neoplasias Pulmonares/terapia , SARS-CoV-2/fisiologia , Fototerapia/métodos , Terapia Combinada , Imunoterapia/métodos
12.
Cancer Rep (Hoboken) ; 7(9): e2122, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39234629

RESUMO

BACKGROUND: Ewing's sarcoma (ES) is the second most common malignant primary bone tumor in children and adolescents. Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme. AIMS: Here, we investigated the role and mechanism of PRDX2 in the development of ES. METHODS AND RESULTS: PRDX2 expression was knocked down in A673 and RDES cells by specific siRNA interference (si-PRDX2). Knockdown of PRDX2 strongly inhibited the proliferation, growth, migration, invasion, and MMP9 activity and induces apoptosis of A673 and RDES cells. si-PRDX2 significantly inhibited the phosphorylation of Akt and the expression of cyclin D1. The transcription factor that might regulate PRDX2 transcription was predicted with the JASPAR and UCSC databases, and analyzed using dual-luciferase and Chromatin co-immunoprecipitation experiments. SNAI1 could activate the transcription of PRDX2 by binding to predicted promoter binding site. CONCLUSION: PRDX2 may be a potential therapeutic target for ES.


Assuntos
Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz , Peroxirredoxinas , Sarcoma de Ewing , Humanos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Sarcoma de Ewing/patologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Linhagem Celular Tumoral , Invasividade Neoplásica , Técnicas de Silenciamento de Genes , Apoptose , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , RNA Interferente Pequeno/genética
13.
Heliyon ; 10(17): e36175, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281467

RESUMO

Objective: To examine and talk about the mechanism of the Huoxue Jiegu compound capsule's effects on osteoblasts and the PI3K/Akt/mTOR signal pathway in rabbits suffering from tibial fractures. Method: In vitro, CCK8 was used to assess the survival rates. Alizarinred staining was used to evaluate mineralized nodules. ALP staining was used to observe the osteoblasts. qRT-PCR was used to determine the mRNA expression of the bone formation-related factors BMP-2, bFGF, and TGF-ß. In vivo, three groups of nine male rabbits each were randomly assigned to three groups: the Model group, the Huoxue Jiegu compound capsule group (HXJGC group), and the inhibitor group (HXJGC+3-MA), four weeks following the intervention. HE staining was employed to examine the rabbits' bone histology. immunohistochemistry was employed to examine the relative expression of the proteins VEGF and LC3-II. Western Blot was utilized to examine the relative expression of the proteins Beclin-1, LC3-II/Ⅰ, p62, p-PI3K, p-AKT, and p-mTOR. Results: Compared to the control group, the medium- and high-dose groups exhibited considerably higher survival rates (P < 0.05), as well as enhanced cell proliferation and differentiation (P < 0.05) and more pronounced mineralized nodules. (P < 0.05), but the low-dose groups showed no appreciable variation. In the low, medium, and high-dose groups, there was a substantial reduction in the expression of bFGF mRNA, whereas the levels of BMP-2 and TGF-ß mRNA were considerably higher than in the control group (P < 0.05). In vivo, after four weeks of treatment, the model control group and inhibito group had a large amount of fibrous hyperplasia accompanied by bleeding and a small amount of inflammatory cell infiltration. But in the HXJGC group, new cartilage appeared, and the surface of the cartilage was smooth and flat. Beclin-1 and LC3-II/I expression in the HXJGC+3 MA group was significantly lower than in the HXJGC and Model groups (P < 0.05). The HXJGC group showed lower p62 expression than the HXJGC+3 MA and model groups (P < 0.05). The HXJGC group exhibited significantly reduced levels of p-PI3K, p-AKT, and p-mTOR expression in comparison to HXJGC+3 MA groups (P < 0.05). Conclusion: Rabbits with tibial fractures can be treated with HXJGC, which can control the expression of the PI3K/Akt/mTOR signal pathway. It can promote the differentiation and maturation of osteoblasts at the fracture end of rabbits, accelerate the recovery of fractures, and achieve the purpose of treating the disease.

14.
Int J Biol Macromol ; 281(Pt 1): 136119, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343259

RESUMO

Apitherapy has a long history in treating Parkinson's disease (PD) in humans, with evidence suggesting that bee venom (BV) can mitigate Parkinson's symptoms. Central to BV's effects is melittin (MLT), a principal peptide whose neuroprotective mechanisms in PD are not fully understood. The study investigated the effects of MLT on an experimental PD model in mice and dopaminergic neuron cells, induced by MPTP or MPP+. We concentrate on the autophagic response elicited by MLT during PD pathogenesis. The findings showed that MLT was shown to protect against MPP+/MPTP cytotoxicity and preserve tyrosine hydroxylase (TH) levels, indicating neuronal safeguarding. Remarkably, MLT instigated mitophagy, enhancing mitochondrial homeostasis in MPP+-exposed SH-SY5Y cells. Further, MLT's promotion of mitophagy was confirmed to be AMPK/mTOR signaling-dependent. Validation using Bafilomycin A1, an autophagy inhibitor, confirmed MLT's neuroprotective role, with autophagy inhibition negating MLT's benefits and reducing TH preservation. These findings illuminate MLT's therapeutic potential, particularly its modulation of mitochondrial dysfunction in PD pathology. Our research advances the understanding of MLT's mechanistic action, emphasizing its role in mitochondrial autophagy and AMPK/mTOR signaling, offering a novel perspective beyond the symptomatic relief associated with BV.

15.
Clin Transl Oncol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251496

RESUMO

BACKGROUND: Aberrant expression of apelin receptor (APLNR) has been found to be involved in various cancers' development, however, its function in prostate cancer (PCa) remains unclear. The research aimed to investigate the role and potential mechanism of APLNR in PCa. METHODS: The mRNA expression of APLNR was detected via qRT-PCR assay. PCa cell proliferation and apoptosis were determined through plate cloning and flow cytometry. In addition, the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) was evaluated using western blot. DNA damage marker (γ-H2AX) was analyzed by immunofluorescence and western blot. GSEA analysis was performed for seeking enrichment pathways of APLNR in PCa, and the protein levels of PI3K, p-PI3K, AKT, p-AKT, mTOR, and p-mTOR were tested using western blot. RESULTS: APLNR expression was up-regulated in PCa tissues and cells. Silencing APLNR enhanced the sensitivity of PCa cells to radiotherapy, which was manifested by inhibiting cell proliferation, promoting cell apoptosis, and promoting DNA damage. Next, silencing APLNR inhibited the PI3K/AKT/mTOR pathway. Specifically, 740Y-P (the PI3K/AKT/mTOR pathway activator) reversed the effects of silencing APLNR on PCa cell proliferation, apoptosis and DNA damage. CONCLUSION: Silencing APLNR inhibited cell proliferation, promoted cell apoptosis, and enhanced the radiosensitivity of PCa cells, which was involved in the PI3K/AKT/mTOR signaling pathway. This study is conducive to the deeper understanding of PCa and further provides a new perspective for the treatment of PCa.

16.
Curr Mol Med ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39279704

RESUMO

BACKGROUND: Osteosarcoma (OS) is a common malignancy among adolescents and children, characterized by a high propensity for metastasis and resistance to chemotherapy. AIMS: This study aimed to investigate the role of COL12A1, a gene often overexpressed in various cancers and associated with poor prognosis, in the progression of OS and explore the underlying mechanisms. METHODS: The expression pattern and potential function of COL12A1 in OS were evaluated using bioinformatics analyses, clinical sample examination, and OS cell lines. Various assays, including transwell, CCK-8, flow cytometry, and wound healing, were performed to assess the impact of COL12A1 on OS cell growth, cell cycle progression, apoptosis, invasion, and migration. Western blot analysis was conducted to investigate markers associated with the FAK/PI3K/AKT/mTOR pathway. RESULTS: COL12A1 expression was significantly elevated in OS tissues and cells. Upregulation of COL12A1 promoted cell growth, accelerated cell cycle progression, and enhanced migration and invasion while inhibiting apoptosis. Conversely, the knockdown of COL12A1 had the opposite effect. Additionally, COL12A1 overexpression increased the phosphorylation of components in the FAK/PI3K/AKT/mTOR pathway. The FAK inhibitor Y15 mitigated the effects of COL12A1 overexpression on cell apoptosis, invasion, proliferation, and the FAK/PI3K/AKT/mTOR pathway in OS. CONCLUSION: Our findings indicated that COL12A1 enhanced OS development by activating the FAK/PI3K/AKT/mTOR pathway, suggesting that COL12A1 could serve as a valuable biomarker for the prediction and identification of OS patients.

17.
Mater Today Bio ; 28: 101215, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221215

RESUMO

Extracellular protein coronas (exPCs), which have been identified in various biofluids, are recognized for their pivotal role in mediating the interaction between nanoparticles and the cytomembrane. However, it is still unclear whether various exPCs can induce different levels of intracellular proteostasis, which is of utmost importance in preserving cellular function, and eliciting distinct intracellular biological behaviors. To investigate this, two types of exPC-coated iron oxide nanoparticles (IONPs) are prepared and used to investigate the influence of exPCs on extracellular and intracellular biological outcomes. The results demonstrate that the formation of exPCs promotes the colloidal stability of IONPs, and the discrepancies in the components of the two exPCs, including opsonin, dysopsonin, and lipoprotein, are responsible for the disparities in cellular uptake and endocytic pathways. Moreover, the differential evolution of the two exPCs during cellular internalization leads to distinct autophagy and glycolysis activities, which can be attributed to the altered depletion of angiopoietin 1 during the formation of intracellular protein coronas, which ultimately impacts the PI3K/AKT-mTOR signaling. These findings offer valuable insights into the dynamic characteristics of exPCs during cellular internalization, and their consequential implications for cellular internalization and intracellular metabolism activity, which may facilitate the comprehension of PCs on biological effects of NPs and expedite the design and application of biomedical nanoparticles.

18.
Front Microbiol ; 15: 1430511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296287

RESUMO

Weaning is one of the most challenging periods in a pig's life, during which piglets suffer from nutrition and other issues. Post-weaning diarrhea is one of the major health problems in the pig industry, leading to high morbidity and mortality rates. Previous studies have demonstrated that both the source and concentration of proteins are closely associated with post-weaning diarrhea in piglets. This study was conducted to prevent and control post-weaning diarrhea by selecting different dietary protein concentrations. To eliminate interference from other protein sources, casein was used as the only protein source in this study. Fourteen piglets (weighing 8.43 ± 0.3 kg, weaned on the 28th day) were randomly assigned to two dietary protein groups: a low-protein group (LP, containing 17% casein) and a high-protein group (HP, containing 30% casein). The experiment lasted 2 weeks, during which all piglets had ad libitum access to food and water. Diarrhea was scored on a scale from 1 to 3 (where 1 indicates normal stools and 3 indicates watery diarrhea), and growth performance measurements were recorded daily. The results showed that the piglets in the HP group had persistent diarrhea during the whole study, whereas no diarrhea was observed among piglets in the control group. The body weights and feed intake were significantly lower in piglets in the HP group compared to those in the LP group (p < 0.05). The gastrointestinal pH was significantly higher in piglets in the HP group than those in the LP group (p < 0.05). The intestinal tract microorganisms of the piglets in both groups were significantly affected by the protein concentration of the diet. A diet with high casein concentration significantly reduced the microbiota diversity. Compared to the LP group, the 30% casein diet decreased the abundance of Firmicutes, Bacteroidetes, and Actinobacteria at the phylum level and the relative abundance of Ruminococcus at the genus level. Diarrhea-related mRNA abundances were analyzed by the real-time polymerase chain reaction (PCR) in the intestine of piglets, and the results showed that the HP concentration markedly decreased the expression of solute carriers (SLC, p < 0.05). The mammalian target of rapamycin-mTOR signaling pathway (p < 0.01) was activated in the HP group. In conclusion, a high-protein diet induced post-weaning diarrhea, decreased growth performance, increased gastrointestinal pH, and reduced expression of solute carrier proteins. However, the relationship between high dietary casein feed and post-weaning diarrhea remains unclear and needs to be explored further.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39327932

RESUMO

Esophageal cancer (EC) is one of the most recalcitrant cancers, with a 5-year survival rate of <30%. The hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) plays an essential role in long-chain fatty acid metabolism, and dysregulation of HADHA has been demonstrated to be involved in a series of metabolic diseases and cancers. However, its role in cancers remains controversial. HADHA has seldom been investigated in EC, and little is known about how HADHA regulates the malignant progression of EC. In this study, we find that HADHA is significantly upregulated in EC tissues and is correlated with poor survival. HADHA knockdown markedly inhibits EC cell proliferation both in vitro and in vivo. The loss of HADHA also induces EC cell apoptosis, causes cell cycle arrest and inhibits cell migration. Additionally, RNA profiling reveals that mTOR signaling is significantly suppressed after HADHA knockdown. Mechanistically, HADHA interacts with SP1 and induces MDM2 expression. In conclusion, both mTOR signaling and the SP1-MDM2 axis participate in the HADHA-induced malignant behavior of EC cells.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39329499

RESUMO

INTRODUCTION: Periodontitis is a serious gum infection that disrupts the soft tissue around teeth. This study aimed to identify the most effective fraction of the Chinese medicine Kangfuxin for periodontitis treatment in a rat model. MATERIALS AND METHODS: Kangfuxin solution was subjected to sequential extraction using chloroform, ethyl acetate, n-butanol, and water. The extracts were evaporated, dissolved in DMSO, diluted in water, and administered to rats via gavage (0.5 mL/day) for two weeks. The n-butanol extract was further fractionated using macroporous resin chromatography with 10%, 30%, 50%, 70%, and 90% ethanol elutions. Levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α in periodontitis samples were examined by ELISA. Leukocyte infiltration in the cementum was analyzed by hematoxylin and eosin (H&E) staining. RESULTS: The n-butanol extract showed the best anti-inflammatory effect, reducing IL-6, IL-1ß, and TNF-α levels in periodontitis samples and alleviating tissue damage and leukocyte infiltration in the cementum. Further fractionation revealed that the 50% ethanol fraction of the n-butanol extract had the most potent action in attenuating inflammation. This fraction suppressed the activation of the PI3K-AKT-mTOR signaling pathway in periodontitis samples. Application of a PI3K activator counteracted the anti-inflammatory effect of the 50% ethanol fraction. CONCLUSIONS: We identified a potent anti-inflammatory fraction (50% ethanol fraction of the n-butanol extract) of Kangfuxin for periodontitis treatment. This fraction suppressed the activity of the PI3K-AKT-mTOR signaling pathway in periodontitis samples. Further research is needed to isolate and characterize the specific bioactive compounds within this fraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA