Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Alzheimers Dement ; 20(5): 3416-3428, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38572850

RESUMO

INTRODUCTION: Screening for Alzheimer's disease neuropathologic change (ADNC) in individuals with atypical presentations is challenging but essential for clinical management. We trained automatic speech-based classifiers to distinguish frontotemporal dementia (FTD) patients with ADNC from those with frontotemporal lobar degeneration (FTLD). METHODS: We trained automatic classifiers with 99 speech features from 1 minute speech samples of 179 participants (ADNC = 36, FTLD = 60, healthy controls [HC] = 89). Patients' pathology was assigned based on autopsy or cerebrospinal fluid analytes. Structural network-based magnetic resonance imaging analyses identified anatomical correlates of distinct speech features. RESULTS: Our classifier showed 0.88 ± $ \pm $ 0.03 area under the curve (AUC) for ADNC versus FTLD and 0.93 ± $ \pm $ 0.04 AUC for patients versus HC. Noun frequency and pause rate correlated with gray matter volume loss in the limbic and salience networks, respectively. DISCUSSION: Brief naturalistic speech samples can be used for screening FTD patients for underlying ADNC in vivo. This work supports the future development of digital assessment tools for FTD. HIGHLIGHTS: We trained machine learning classifiers for frontotemporal dementia patients using natural speech. We grouped participants by neuropathological diagnosis (autopsy) or cerebrospinal fluid biomarkers. Classifiers well distinguished underlying pathology (Alzheimer's disease vs. frontotemporal lobar degeneration) in patients. We identified important features through an explainable artificial intelligence approach. This work lays the groundwork for a speech-based neuropathology screening tool.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Imageamento por Ressonância Magnética , Fala , Humanos , Feminino , Doença de Alzheimer/patologia , Masculino , Idoso , Demência Frontotemporal/patologia , Fala/fisiologia , Pessoa de Meia-Idade , Fenótipo , Degeneração Lobar Frontotemporal/patologia , Aprendizado de Máquina
2.
J Affect Disord ; 355: 495-504, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554882

RESUMO

INTRODUCTION: Inconsistent self-reports of lifetime suicide attempts (LSAs) are a major obstacle for accurate assessment of suicidal behavior. This study is the first to posit that adolescents at higher risk report LSAs more consistently than those at lower risk, revealing a link between suicide attempt risk and consistent reporting. METHODS: A machine learning model was trained with 70 % of the baseline assessment data of a longitudinal sample of Norwegian adolescents (n = 10,739). The model was used to estimate the LSA risk score for the remaining 30 % of the testing dataset. The relationship between these baseline risk scores and the consistency of reporting LSAs was assessed using a 2-year follow-up reassessment of the testing dataset. RESULTS: Internalizing problems, optimism about the future, conduct problems, substance use, and disordered eating were important factors associated with suicide attempt risk. Of the participants, 63.41 % had inconsistent self-reports at the two-year follow-up. Adolescents who consistently reported LSAs had significantly higher scores of suicide attempt risk at baseline. Two logistic regression analyses confirmed an association between suicide attempt risk and inconsistent self-reported LSAs and showed that sex (being male), and lower levels of depression and conduct problems significantly predicted such inconsistencies. Those who inconsistently reported LSAs were more likely than the others to be classified by the model as false negatives at the baseline risk assessment due to their lower estimated risk scores. LIMITATIONS: Suicide attempts were measured with a single item in this study. CONCLUSION: These risk factors support the theory of adolescent suicidality (TAS) and could improve suicide attempt risk assessment. Inconsistent self-reported LSAs signal lower suicide attempt risk.


Assuntos
Ideação Suicida , Tentativa de Suicídio , Adolescente , Humanos , Masculino , Feminino , Autorrelato , Estudos Longitudinais , Fatores de Risco
3.
Comput Biol Chem ; 108: 107999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070457

RESUMO

Breast cancer continues to be a prominent cause for substantial loss of life among women globally. Despite established treatment approaches, the rising prevalence of breast cancer is a concerning trend regardless of geographical location. This highlights the need to identify common key genes and explore their biological significance across diverse populations. Our research centered on establishing a correlation between common key genes identified in breast cancer patients. While previous studies have reported many of the genes independently, our study delved into the unexplored realm of their mutual interactions, that may establish a foundational network contributing to breast cancer development. Machine learning algorithms were employed for sample classification and key gene selection. The best performance model further selected the candidate genes through expression pattern recognition. Subsequently, the genes common in all the breast cancer patients from India, China, Czech Republic, Germany, Malaysia and Saudi Arabia were selected for further study. We found that among ten classifiers, Catboost exhibited superior performance with an average accuracy of 92%. Functional enrichment analysis and pathway analysis revealed that calcium signaling pathway, regulation of actin cytoskeleton pathway and other cancer-associated pathways were highly enriched with our identified genes. Notably, we observed that these genes regulate each other, forming a complex network. Additionally, we identified PALMD gene as a novel potential biomarker for breast cancer progression. Our study revealed key gene modules forming a complex network that were consistently expressed in different populations, affirming their critical role and biological significance in breast cancer. The identified genes hold promise as prospective biomarkers of breast cancer prognosis irrespective of country of origin or ethnicity. Future investigations will expand upon these genes in a larger population and validate their biological functions through in vivo analysis.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Biologia Computacional , Aprendizado de Máquina
4.
Bioengineering (Basel) ; 10(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38002441

RESUMO

Support ector achine (SVM) is a newer machine learning algorithm for classification, while logistic regression (LR) is an older statistical classification method. Despite the numerous studies contrasting SVM and LR, new improvements such as bagging and ensemble have been applied to them since these comparisons were made. This study proposes a new hybrid model based on SVM and LR for predicting small events per variable (EPV). The performance of the hybrid, SVM, and LR models with different EPV values was evaluated using COVID-19 data from December 2019 to May 2020 provided by the WHO. The study found that the hybrid model had better classification performance than SVM and LR in terms of accuracy, mean squared error (MSE), and root mean squared error (RMSE) for different EPV values. This hybrid model is particularly important for medical authorities and practitioners working in the face of future pandemics.

5.
Environ Sci Technol ; 57(43): 16414-16423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844141

RESUMO

Urban ambient air contains a cocktail of antibiotic resistance genes (ARGs) emitted from various anthropogenic sites. However, what is largely unknown is whether the airborne ARGs exhibit site-specificity or their pathogenic hosts persistently exist in the air. Here, by retrieving 1.2 Tb metagenomic sequences (n = 136), we examined the airborne ARGs from hospitals, municipal wastewater treatment plants (WWTPs) and landfills, public transit centers, and urban sites located in seven of China's megacities. As validated by the multiple machine learning-based classification and optimization, ARGs' site-specificity was found to be the most apparent in hospital air, with featured resistances to clinical-used rifamycin and (glyco)peptides, whereas the more environmentally prevalent ARGs (e.g., resistance to sulfonamide and tetracycline) were identified being more specific to the nonclinical ambient air settings. Nearly all metagenome-assembled genomes (MAGs) that possessed the site-featured resistances were identified as pathogenic taxa, which occupied the upper-representative niches in all the neutrally distributed airborne microbial community (P < 0.01, m = 0.22-0.50, R2 = 0.41-0.86). These niche-favored putative resistant pathogens highlighted the enduring antibiotic resistance hazards in the studied urban air. These findings are critical, albeit the least appreciated until our study, to gauge the airborne dimension of resistomes' features and fates in urban atmospheric environments.


Assuntos
Genes Bacterianos , Metagenoma , Cidades , Antibacterianos/farmacologia , China
6.
J Environ Manage ; 345: 118924, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678017

RESUMO

Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies.


Assuntos
Algoritmos , Aprendizado de Máquina , Argila , Nutrientes , Ontário , Fósforo
7.
J Med Signals Sens ; 13(3): 239-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622041

RESUMO

The Holter monitor captures the electrocardiogram (ECG) and detects abnormal episodes, but physicians still use manual cross-checking. It takes a considerable time to annotate a long-term ECG record. As a result, research continues to be conducted to produce an effective automatic cardiac episode detection technique that will reduce the manual burden. The current study presents a signal processing framework to detect ventricular ectopic beat (VEB) episodes in long-term ECG signals of cross-database. The proposed study has experimented with the cross-database of open-source and proprietary databases. The ECG signals were preprocessed and extracted the features such as pre-RR interval, post-RR interval, QRS complex duration, QR slope, and RS slope from each beat. In the proposed work, four models such as support vector machine, k-means nearest neighbor, nearest mean classifier, and nearest RMS (NRMS) classifiers were used to classify the data into normal and VEB episodes. Further, the trained models were used to predict the VEB episodes from the proprietary database. NRMS has reported better performance among four classification models. NRMS has shown the classification accuracy of 98.68% and F1-score of 94.12%, recall rate of 100%, specificity of 98.53%, and precision of 88.89% with an open-source database. In addition, it showed an accuracy of 99.97%, F1-score of 94.54%, recall rate of 98.62%, specificity of 99.98%, and precision of 90.79% to detect the VEB cardiac episodes from the proprietary database. Therefore, it is concluded that the proposed framework can be used in the automatic diagnosis system to detect VEB cardiac episodes.

8.
Cancers (Basel) ; 15(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190137

RESUMO

PURPOSE: To predict deep myometrial infiltration (DMI), clinical risk category, histological type, and lymphovascular space invasion (LVSI) in women with endometrial cancer using machine learning classification methods based on clinical and image signatures from T2-weighted MR images. METHODS: A training dataset containing 413 patients and an independent testing dataset consisting of 82 cases were employed in this retrospective study. Manual segmentation of the whole tumor volume on sagittal T2-weighted MRI was performed. Clinical and radiomic features were extracted to predict: (i) DMI of endometrial cancer patients, (ii) endometrial cancer clinical high-risk level, (iii) histological subtype of tumor, and (iv) presence of LVSI. A classification model with different automatically selected hyperparameter values was created. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve, F1 score, average recall, and average precision were calculated to evaluate different models. RESULTS: Based on the independent external testing dataset, the AUCs for DMI, high-risk endometrial cancer, endometrial histological type, and LVSI classification were 0.79, 0.82, 0.91, and 0.85, respectively. The corresponding 95% confidence intervals (CI) of the AUCs were [0.69, 0.89], [0.75, 0.91], [0.83, 0.97], and [0.77, 0.93], respectively. CONCLUSION: It is possible to classify endometrial cancer DMI, risk, histology type, and LVSI using different machine learning methods.

9.
Heliyon ; 9(3): e14518, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994397

RESUMO

Polycystic ovary syndrome (PCOS) is the most frequent endocrinological anomaly in reproductive women that causes persistent hormonal secretion disruption, leading to the formation of numerous cysts within the ovaries and serious health complications. But the real-world clinical detection technique for PCOS is very critical since the accuracy of interpretations being substantially dependent on the physician's expertise. Thus, an artificially intelligent PCOS prediction model might be a feasible additional technique to the error prone and time-consuming diagnostic technique. In this study, a modified ensemble machine learning (ML) classification approach is proposed utilizing state-of-the-art stacking technique for PCOS identification with patients' symptom data; employing five traditional ML models as base learners and then one bagging or boosting ensemble ML model as the meta-learner of the stacked model. Furthermore, three distinct types of feature selection strategies are applied to pick different sets of features with varied numbers and combinations of attributes. To evaluate and explore the dominant features necessary for predicting PCOS, the proposed technique with five variety of models and other ten types of classifiers is trained, tested and assessed utilizing different feature sets. As outcomes, the proposed stacking ensemble technique significantly enhances the accuracy in comparison to the other existing ML based techniques in case of all varieties of feature sets. However, among various models investigated to categorize PCOS and non-PCOS patients, the stacking ensemble model with 'Gradient Boosting' classifier as meta learner outperforms others with 95.7% accuracy while utilizing the top 25 features selected using Principal Component Analysis (PCA) feature selection technique.

10.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991884

RESUMO

Terminal neurological conditions can affect millions of people worldwide and hinder them from doing their daily tasks and movements normally. Brain computer interface (BCI) is the best hope for many individuals with motor deficiencies. It will help many patients interact with the outside world and handle their daily tasks without assistance. Therefore, machine learning-based BCI systems have emerged as non-invasive techniques for reading out signals from the brain and interpreting them into commands to help those people to perform diverse limb motor tasks. This paper proposes an innovative and improved machine learning-based BCI system that analyzes EEG signals obtained from motor imagery to distinguish among various limb motor tasks based on BCI competition III dataset IVa. The proposed framework pipeline for EEG signal processing performs the following major steps. The first step uses a meta-heuristic optimization technique, called the whale optimization algorithm (WOA), to select the optimal features for discriminating between neural activity patterns. The pipeline then uses machine learning models such as LDA, k-NN, DT, RF, and LR to analyze the chosen features to enhance the precision of EEG signal analysis. The proposed BCI system, which merges the WOA as a feature selection method and the optimized k-NN classification model, demonstrated an overall accuracy of 98.6%, outperforming other machine learning models and previous techniques on the BCI competition III dataset IVa. Additionally, the EEG feature contribution in the ML classification model is reported using Explainable AI (XAI) tools, which provide insights into the individual contributions of the features in the predictions made by the model. By incorporating XAI techniques, the results of this study offer greater transparency and understanding of the relationship between the EEG features and the model's predictions. The proposed method shows potential levels for better use in controlling diverse limb motor tasks to help people with limb impairments and support them while enhancing their quality of life.


Assuntos
Interfaces Cérebro-Computador , Qualidade de Vida , Eletroencefalografia/métodos , Algoritmos , Aprendizado de Máquina
11.
Surg Endosc ; 37(6): 4754-4765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897405

RESUMO

BACKGROUND: We previously developed grading metrics for quantitative performance measurement for simulated endoscopic sleeve gastroplasty (ESG) to create a scalar reference to classify subjects into experts and novices. In this work, we used synthetic data generation and expanded our skill level analysis using machine learning techniques. METHODS: We used the synthetic data generation algorithm SMOTE to expand and balance our dataset of seven actual simulated ESG procedures using synthetic data. We performed optimization to seek optimum metrics to classify experts and novices by identifying the most critical and distinctive sub-tasks. We used support vector machine (SVM), AdaBoost, K-nearest neighbors (KNN) Kernel Fisher discriminant analysis (KFDA), random forest, and decision tree classifiers to classify surgeons as experts or novices after grading. Furthermore, we used an optimization model to create weights for each task and separate the clusters by maximizing the distance between the expert and novice scores. RESULTS: We split our dataset into a training set of 15 samples and a testing dataset of five samples. We put this dataset through six classifiers, SVM, KFDA, AdaBoost, KNN, random forest, and decision tree, resulting in 0.94, 0.94, 1.00, 1.00, 1.00, and 1.00 accuracy, respectively, for training and 1.00 accuracy for the testing results for SVM and AdaBoost. Our optimization model maximized the distance between the expert and novice groups from 2 to 53.72. CONCLUSION: This paper shows that feature reduction, in combination with classification algorithms such as SVM and KNN, can be used in tandem to classify endoscopists as experts or novices based on their results recorded using our grading metrics. Furthermore, this work introduces a non-linear constraint optimization to separate the two clusters and find the most important tasks using weights.


Assuntos
Gastroplastia , Humanos , Algoritmos , Aprendizado de Máquina , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte
12.
Neurobiol Dis ; 179: 106047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841423

RESUMO

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Assuntos
Doença de Alzheimer , Encéfalo , Conectoma , Demência Frontotemporal , Vias Neurais , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Eletroencefalografia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Reprodutibilidade dos Testes , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
13.
Cereb Cortex ; 33(5): 1550-1565, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35483706

RESUMO

BACKGROUND: Accurate parcellation of the cerebral cortex in an individual is a guide to its underlying organization. The most promising in vivo quantitative magnetic resonance (MR)-based microstructural cortical mapping methods are yet to achieve a level of parcellation accuracy comparable to quantitative histology. METHODS: We scanned 6 participants using a 3D echo-planar imaging MR fingerprinting (EPI-MRF) sequence on a 7T Siemens scanner. After projecting MRF signals to the individual-specific inflated model of the cortical surface, normalized autocorrelations of MRF residuals of vertices of 8 microstructurally distinct areas (BA1, BA2, BA4a, BA6, BA44, BA45, BA17, and BA18) from 3 cortical regions were used as feature vector inputs into linear support vector machine (SVM), radial basis function SVM (RBF-SVM), random forest, and k-nearest neighbors supervised classification algorithms. The algorithms' prediction performance was compared using: (i) features from each vertex or (ii) features from neighboring vertices. RESULTS: The neighborhood-based RBF-SVM classifier achieved the highest prediction score of 0.85 for classification of MRF residuals in the central region from a held-out participant. CONCLUSIONS: We developed an automated method of cortical parcellation using a combination of MR fingerprinting residual analysis and machine learning classification. Our findings provide the basis for employing unsupervised learning algorithms for whole-cortex structural parcellation in individuals.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar , Córtex Cerebral/diagnóstico por imagem , Máquina de Vetores de Suporte , Espectroscopia de Ressonância Magnética
14.
Comput Methods Biomech Biomed Engin ; 26(11): 1341-1352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36093771

RESUMO

To assess the severity and progression of adolescents with idiopathic scoliosis (AIS), radiography with X-rays is usually used. The methods based on statistical observations have been developed from 3D reconstruction of the trunk or topography. Machine learning has shown great potential to classify the severity of scoliosis on imaging data, generally on X-ray measurements. It is also known that AIS leads to the development of gait disorder. To our knowledge, machine learning has never been tested on spine intervertebral efforts during gait as a radiation-free method to classify the severity of spinal deformity in AIS. Develop automated machine learning algorithms in lumbar/thoracolumbar scoliosis to classify the severity of spinal deformity of AIS based on the lumbosacral joint (L5-S1) efforts during gait. The lumbosacral joint efforts of 30 individuals with lumbar/thoracolumbar AIS were used as distinctive features fed to the machine learning algorithms. Several tests were run using various classification algorithms. The labeling consisted of three classes reflecting the severity of scoliosis i.e. mild, moderate and severe. The ensemble classifier algorithm including k-nearest neighbors, support vector machine, random forest and multilayer perceptron achieved the most promising results, with accuracy scores of 91.4%. This preliminary study shows lumbosacral joint efforts can be used to classify the severity of spinal deformity in lumbar/thoracolumbar AIS. This method showed the potential of being used as an assessment tool to follow-up the progression of AIS as a radiation-free method, alternative to radiography. Future studies should be performed to test the method on other categories of AIS.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Coluna Vertebral , Marcha , Articulações , Algoritmos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Vértebras Torácicas/cirurgia
15.
Gait Posture ; 99: 24-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327535

RESUMO

BACKGROUND: In physical therapy, postural tests are frequently used to diagnose neuropathies, particularly in diabetic individuals. This study aims to develop a method based on the analysis of time series that allows discriminating between healthy and diabetic subjects with or without a neuropathic condition. RESEARCH QUESTION: Do features obtained from time series corresponding to postural tests allow us to reliably discriminate between healthy, diabetic and neuropathic patients? METHODS: In this study, 32 people participated in the healthy, diabetic, and neuropathic categories (11, 9, and 12, respectively). The data was collected by positioning each participant on a Wii Balanced Board platform, under 8 different conditions. The analyzed time series are sensed by devices that capture variations in the subject's center of pressure when subjected to a test on different conditions over a short period of time. The method proposed considers statistical techniques used for characterizing the time series combined with machine learning techniques to classify the individual's profile into one of the three categories mentioned. The classification is supported by an underlying probabilistic model, based on the characteristics of the time series, generating average curves for each class, which are then used by the classification methods. RESULTS: The empirical results include classification models for each class, obtaining a performance (F-score) over 98%. In addition, other models considering the particular conditions to which the subject is exposed during the test are developed, revealing that the conditions of eyes open and eyes closed show the highest levels of discrimination to classify participants into one of the three class categories. SIGNIFICANCE: These results suggest a test protocol simplification and, at the same time, that the proposed method based on the analysis of the time series associated with the test used is highly predictive and may reliably complement or substitute a questionnaire-based diagnosis.


Assuntos
Doenças do Sistema Nervoso Periférico , Equilíbrio Postural , Humanos , Fatores de Tempo , Modelos Estatísticos , Aprendizado de Máquina
16.
Interspeech ; 2023: 4603-4607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39055528

RESUMO

Social interaction quality ratings derived from short natural conversations can differentiate children with and without autism at the group level. In this work, we explored conversations between children and an unfamiliar adult who rated their social interaction success on six dimensions. Using hand-crafted acoustic and lexical features, we built different classifiers to predict children's dimensional conversation quality. The best classifier achieved 61% accuracy, which outperformed human raters (49%). Follow-up analyses revealed that a subset of features determined communication quality scores. Additionally, we extracted acoustic features using a pretrained audio transformer and improved our prediction to 68%. This study suggests that automatically predicting conversation quality could be an inexpensive and objective way to monitor intervention progress in children with communication challenges, and could be used to identify intervention targets for improving conversational success.

17.
Remote Sens (Basel) ; 14(18): 4452, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36172268

RESUMO

Accurate plant-type (PT) detection forms an important basis for sustainable land management maintaining biodiversity and ecosystem services. In this sense, Sentinel-2 satellite images of the Copernicus program offer spatial, spectral, temporal, and radiometric characteristics with great potential for mapping and monitoring PTs. In addition, the selection of a best-performing algorithm needs to be considered for obtaining PT classification as accurate as possible. To date, no freely downloadable toolbox exists that brings the diversity of the latest supervised machine-learning classification algorithms (MLCAs) together into a single intuitive user-friendly graphical user interface (GUI). To fill this gap and to facilitate and automate the usage of MLCAs, here we present a novel GUI software package that allows systematically training, validating, and applying pixel-based MLCA models to remote sensing imagery. The so-called MLCA toolbox has been integrated within ARTMO's software framework developed in Matlab which implements most of the state-of-the-art methods in the machine learning community. To demonstrate its utility, we chose a heterogeneous case study scene, a landscape in Southwest Iran to map PTs. In this area, four main PTs were identified, consisting of shrub land, grass land, semi-shrub land, and shrub land-grass land vegetation. Having developed 21 MLCAs using the same training and validation, datasets led to varying accuracy results. Gaussian process classifier (GPC) was validated as the top-performing classifier, with an overall accuracy (OA) of 90%. GPC follows a Laplace approximation to the Gaussian likelihood under the supervised classification framework, emerging as a very competitive alternative to common MLCAs. Random forests resulted in the second-best performance with an OA of 86%. Two other types of ensemble-learning algorithms, i.e., tree-ensemble learning (bagging) and decision tree (with error-correcting output codes), yielded an OA of 83% and 82%, respectively. Following, thirteen classifiers reported OA between 70% and 80%, and the remaining four classifiers reported an OA below 70%. We conclude that GPC substantially outperformed all classifiers, and thus, provides enormous potential for the classification of a diversity of land-cover types. In addition, its probabilistic formulation provides valuable band ranking information, as well as associated predictive variance at a pixel level. Nevertheless, as these are supervised (data-driven) classifiers, performances depend on the entered training data, meaning that an assessment of all MLCAs is crucial for any application. Our analysis demonstrated the efficacy of ARTMO's MLCA toolbox for an automated evaluation of the classifiers and subsequent thematic mapping.

18.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563350

RESUMO

Alzheimer's disease (AD) has become a problem, owing to its high prevalence in an aging society with no treatment available after onset. However, early diagnosis is essential for preventive intervention to delay disease onset due to its slow progression. The current AD diagnostic methods are typically invasive and expensive, limiting their potential for widespread use. Thus, the development of biomarkers in available biofluids, such as blood, urine, and saliva, which enables low or non-invasive, reasonable, and objective evaluation of AD status, is an urgent task. Here, we reviewed studies that examined biomarker candidates for the early detection of AD. Some of the candidates showed potential biomarkers, but further validation studies are needed. We also reviewed studies for non-invasive biomarkers of AD. Given the complexity of the AD continuum, multiple biomarkers with machine-learning-classification methods have been recently used to enhance diagnostic accuracy and characterize individual AD phenotypes. Artificial intelligence and new body fluid-based biomarkers, in combination with other risk factors, will provide a novel solution that may revolutionize the early diagnosis of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Inteligência Artificial , Biomarcadores , Diagnóstico Precoce , Humanos , Aprendizado de Máquina
19.
Metabolites ; 12(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323675

RESUMO

Point-of-care screening tools are essential to expedite patient care and decrease reliance on slow diagnostic tools (e.g., microbial cultures) to identify pathogens and their associated antibiotic resistance. Analysis of volatile organic compounds (VOC) emitted from biological media has seen increased attention in recent years as a potential non-invasive diagnostic procedure. This work explores the use of solid phase micro-extraction (SPME) and ambient plasma ionization mass spectrometry (MS) to rapidly acquire VOC signatures of bacteria and fungi. The MS spectrum of each pathogen goes through a preprocessing and feature extraction pipeline. Various supervised and unsupervised machine learning (ML) classification algorithms are trained and evaluated on the extracted feature set. These are able to classify the type of pathogen as bacteria or fungi with high accuracy, while marked progress is also made in identifying specific strains of bacteria. This study presents a new approach for the identification of pathogens from VOC signatures collected using SPME and ambient ionization MS by training classifiers on just a few samples of data. This ambient plasma ionization and ML approach is robust, rapid, precise, and can potentially be used as a non-invasive clinical diagnostic tool for point-of-care applications.

20.
Front Aging Neurosci ; 14: 754600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197839

RESUMO

Patients with bipolar disorder have deficits in self-referenced information. The brain functional connectivity during social cognitive processing in bipolar disorder is unclear. Electroencephalogram (EEG) was recorded in 23 patients with bipolar disorder and 19 healthy comparison subjects. We analyzed the time-frequency distribution of EEG power for each electrode associated with self, other, and font reflection conditions and used the phase lag index to characterize the functional connectivity between electrode pairs for 4 frequency bands. Then, the network properties were assessed by graph theoretic analysis. The results showed that bipolar disorder induced a weaker response power and phase lag index values over the whole brain in both self and other reflection conditions. Moreover, the characteristic path length was increased in patients during self-reflection processing, whereas the global efficiency and the node degree were decreased. In addition, when discriminating patients from normal controls, we found that the classification accuracy was high. These results suggest that patients have impeded integration of attention, memory, and other resources of the whole brain, resulting in a deficit of efficiency and ability in self-referential processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA