Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 10(13): 6752-6768, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724548

RESUMO

Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface-dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen-related traits play a central role in tree composition effects on soil fauna and decomposition.

2.
Proc Biol Sci ; 286(1914): 20191647, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662076

RESUMO

Nutrient cycling in most terrestrial ecosystems is controlled by moisture-dependent decomposer activity. In arid ecosystems, plant litter cycling exceeds rates predicted based on precipitation amounts, suggesting that additional factors are involved. Attempts to reveal these factors have focused on abiotic degradation, soil-litter mixing and alternative moisture sources. Our aim was to explore an additional hypothesis that macro-detritivores control litter cycling in deserts. We quantified the role different organisms play in clearing plant detritus from the desert surface, using litter baskets with different mesh sizes that allow selective entry of micro-, meso- or macrofauna. We also measured soil nutrient concentrations in increasing distances from the burrows of a highly abundant macro-detritivore, the desert isopod Hemilepistus reaumuri. Macro-detritivores controlled the clearing of plant litter in our field site. The highest rates of litter removal were measured during the hot and dry summer when isopod activity peaks and microbial activity is minimal. We also found substantial enrichment of inorganic nitrogen and phosphorous near isopod burrows. We conclude that burrowing macro-detritivores are important regulators of litter cycling in this arid ecosystem, providing a plausible general mechanism that explains the unexpectedly high rates of plant litter cycling in deserts.


Assuntos
Fenômenos Ecológicos e Ambientais , Ecossistema , Comportamento Alimentar , Isópodes/fisiologia , Animais , Clima Desértico
3.
Zookeys ; (801): 265-304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564039

RESUMO

Woodlice are key organisms for nutrient cycling in many terrestrial ecosystems; however, knowledge on this invertebrate group is limited as for other soil fauna taxa. Here, we present an annotated checklist of the woodlice of Belgium, a small but densely populated country in Western Europe. We reviewed all 142 publications on Belgian woodlice, the oldest dating back to 1831 and re-identified all doubtful specimens from the Royal Belgian Institute of Natural Sciences (RBINS) collection. These data is complemented with observations from extensive field surveys dating from March 2014 until December 2017. We report 36 species of woodlice with free-living populations for Belgium. Nine species can be added compared to the latest checklist published in 2000 being Hyloniscusriparius (C. Koch, 1838), Miktoniscuspatiencei Vandel, 1946, Trichoniscoidessarsi Patience, 1908, Haplophthalmusmontivagus Verhoeff, 1941, Porcelliomonticola Lereboullet, 1853, Metatrichoniscoidesleydigii (Weber, 1880), Trichoniscusalemannicus Verhoeff, 1917, Elumacaelata (Miers, 1877) and Philosciaaffinis Verhoeff, 1908. Two species are deleted from the checklist (Ligidiumgermanicum Verhoeff, 1901 and Armadillidiumdepressum Brandt, 1833) because records are doubtful and no material has been preserved. Additionally the data of the field surveys is used to determine a species status of occurrence in Belgium. For each species, a short overview of their first records is provided and their confirmation as part of the Belgian fauna, their current status, as well as a complete bibliography of the species in Belgium.

4.
Ecol Evol ; 4(4): 408-16, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24634725

RESUMO

RECENT INVESTIGATIONS HAVE SHOWN THAT TWO COMPONENTS OF COMMUNITY TRAIT COMPOSITION ARE IMPORTANT FOR KEY ECOSYSTEM PROCESSES: (i) the community-weighted mean trait value (CWM), related to the mass ratio hypothesis and dominant trait values in the community, and (ii) functional diversity (FD), related to the complementarity hypothesis and the divergence of trait values. However, no experiments controlling for the inherent dependence between CWM and FD have been conducted so far. We used a novel experimental framework to disentangle the unique and shared effects of CWM and FD in a leaf litter-macrodetritivore model system. We manipulated isopod assemblages varying in species number, CWM and FD of litter consumption rate to test the relative contribution of these community parameters in the decomposition process. We showed that CWM, but also the combination of CWM and FD, is a main factor controlling litter decomposition. When we tested individual biodiversity components separately, CWM of litter consumption rate showed a significant effect on decomposition, while FD and species richness alone did not. Our study demonstrated that (i) trait composition rather than species diversity drives litter decomposition, (ii) dominant trait values in the community (CWM) play a chief role in driving ecosystem processes, corroborating the mass ratio hypothesis, and (iii) trait dissimilarity can contribute in modulating the overall biodiversity effects. Future challenge is to assess whether the generality of our finding, that is, that dominant trait values (CWM) predominate over trait dissimilarity (FD), holds for other ecosystem processes, environmental conditions and different spatial and temporal scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA