Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Pharmacol Res ; 208: 107379, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218421

RESUMO

Tuberculosis (TB), a deadly disease caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by in vitro macrophages and ex vivo macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.


Assuntos
Antituberculosos , Grafite , Macrófagos , Mycobacterium tuberculosis , Rifampina , Tuberculose , Grafite/química , Animais , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Rifampina/farmacologia , Rifampina/administração & dosagem , Rifampina/uso terapêutico , Camundongos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/administração & dosagem , Autofagia/efeitos dos fármacos , Macaca , Nanopartículas , Células RAW 264.7
2.
ACS Appl Mater Interfaces ; 16(36): 47206-47215, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39190615

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that severely compromises joint health. The primary therapeutic strategy for advanced RA aims to inhibit joint inflammation. However, the nonspecific distribution of pharmacological agents has limited therapeutic efficacy and heightens the risks associated with RA treatment. To address this issue, we developed mesenchymal stem cell (MSC)-based biomimetic liposomes, termed MSCsome, which were composed of a fusion between MSC membranes and liposomes. MSC some with relatively simple preparation method effectively enhanced the targeting efficiency of drug to diseased joints. Interaction between lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 enhanced the affinity of the MSCsome for polarized macrophages, thereby improving its targeting capability to affected joints. The effective targeted delivery facilitated drug accumulation in joints, resulting in the significant inhibition of the inflammation, as well as protection and repair of the cartilage. In conclusion, this study introduced MSCsome as a promising approach for the effective treatment of advanced RA, providing a novel perspective on targeted drug delivery therapy for inflammatory diseases.


Assuntos
Artrite Reumatoide , Dexametasona , Sistemas de Liberação de Medicamentos , Lipossomos , Células-Tronco Mesenquimais , Lipossomos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Dexametasona/administração & dosagem , Humanos , Animais , Camundongos , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Masculino , Biomimética , Cartilagem/efeitos dos fármacos , Cartilagem/patologia
3.
Front Immunol ; 15: 1384623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044819

RESUMO

Introduction: Malignant peripheral nerve sheath tumors (MPNST) pose a significant therapeutic challenge due to high recurrence rates after surgical resection and a largely ineffective response to traditional chemotherapy. An alternative treatment strategy is oncolytic viroimmunotherapy, which can elicit a durable and systemic antitumor immune response and is Food and Drug Administration (FDA)-approved for the treatment of melanoma. Unfortunately, only a subset of patients responds completely, underscoring the need to address barriers hindering viroimmunotherapy effectiveness. Methods: Here we investigated the therapeutic utility of targeting key components of the MPNST immunosuppressive microenvironment to enhance viroimmunotherapy's antitumor efficacy in three murine models, one of which showed more immunogenic characteristics than the others. Results: Myelomodulatory therapy with pexidartinib, a small molecule inhibitor of CSF1R tyrosine kinase, and the oncolytic herpes simplex virus T-VEC exhibited the most significant increase in median survival time in the highly immunogenic model. Additionally, targeting myeloid cells with the myelomodulatory therapy trabectedin, a small molecule activator of caspase-8 dependent apoptosis, augmented the survival benefit of T-VEC in a less immunogenic MPNST model. However, tumor regressions or shrinkages were not observed. Depletion experiments confirmed that the enhanced survival benefit relied on a T cell response. Furthermore, flow cytometry analysis following combination viroimmunotherapy revealed decreased M2 macrophages and myeloid-derived suppressor cells and increased tumor-specific gp70+ CD8 T cells within the tumor microenvironment. Discussion: In summary, our findings provide compelling evidence for the potential to leverage viroimmunotherapy with myeloid cell targeting against MPNST and warrant further investigation.


Assuntos
Modelos Animais de Doenças , Terapia Viral Oncolítica , Microambiente Tumoral , Animais , Terapia Viral Oncolítica/métodos , Camundongos , Microambiente Tumoral/imunologia , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Imunoterapia/métodos , Humanos , Terapia Combinada , Feminino , Camundongos Endogâmicos C57BL , Neoplasias de Bainha Neural/terapia , Neoplasias de Bainha Neural/imunologia , Neoplasias de Bainha Neural/genética , Aminopiridinas , Pirróis
4.
ACS Appl Mater Interfaces ; 16(29): 37656-37668, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987704

RESUMO

Rheumatoid arthritis (RA), an immune-mediated inflammatory disease, is characterized by a large number of infiltrated immune cells and abnormally elevated reactive oxygen species (ROS) in the joint. Various proinflammatory factors secreted by macrophages and the elevated ROS by inflammatory cells are deeply intertwined and together contribute to joint damage. Targeted and sustained anti-inflammation and antioxidation strategies are needed for RA treatment. To alleviate the oxidative stress and target the source of inflammatory cytokines, we developed a thermosensitive injectable hydrogel, Dex-DSLip/Cro@Gel, to coordinate the targeted anti-inflammatory and antioxidation effects. Within the injectable gel, dexamethasone (Dex)-loaded liposomes (Dex-DSLip), modified with dextran sulfate (DS), target macrophages via interaction with scavenger receptor A (SR-A). Simultaneously, crocin I (Cro) is loaded in the gel with a high loading capacity. The porous structure of Dex-DSLip/Cro@Gel successfully prolongs the retention time of both drugs and sustains the release of Dex and Cro. After intra-articular injection of Dex-DSLip/Cro@Gel in RA rats, the expression of inflammatory factors in the ankle joints was significantly reduced. Joint erythema and bone erosion were markedly alleviated. Through the synergistic effects of Dex and Cro, Dex-DSLip/Cro@Gel demonstrates targeted anti-inflammatory and antioxidation effects as well as mitigated bone erosion and long-term therapeutic effects for RA. This thermosensitive injectable nanocomposite hydrogel synergizes anti-inflammatory and antioxidation effects and targets the microenvironment in the joint, offering a new approach for RA treatment.


Assuntos
Antioxidantes , Artrite Reumatoide , Macrófagos , Nanocompostos , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Nanocompostos/química , Hidrogéis/química , Artrite Reumatoide/tratamento farmacológico , Injeções , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sulfato de Dextrana/química , Carotenoides/administração & dosagem , Carotenoides/química , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Camundongos , Ratos , Células Cultivadas , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
6.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724958

RESUMO

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Assuntos
Flavonoides , Macrófagos , Estruturas Metalorgânicas , Osteoartrite , Espécies Reativas de Oxigênio , Estruturas Metalorgânicas/química , Osteoartrite/tratamento farmacológico , Animais , Flavonoides/farmacologia , Flavonoides/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Antioxidantes/farmacologia , Antioxidantes/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/química , Masculino , Ratos , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley
7.
Adv Sci (Weinh) ; 11(29): e2308325, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38790144

RESUMO

Macrophages play pivotal roles in the regulation of inflammatory responses and tissue repair, making them a prime target for inflammation alleviation. However, the accurate and efficient macrophages targeting is still a challenging task. Motivated by the efficient and specific removal of apoptotic cells by macrophages efferocytosis, a novel biomimetic liposomal system called Effero-RLP (Efferocytosis-mediated Red blood cell hybrid Liposomes) is developed which incorporates the membrane of apoptotic red blood cells (RBCs) with liposomes for the purpose of highly efficient macrophages targeting. Rosiglitazone (ROSI), a PPARγ agonist known to attenuate macrophage inflammatory responses, is encapsulated into Effero-RLP as model drug to regulate macrophage functions in DSS-induced colitis mouse model. Intriguingly, the Effero-RLP exhibits selective and efficient uptake by macrophages, which is significantly inhibited by the efferocytosis blocker Annexin V. In animal models, the Effero-RLP demonstrates rapid recognition by macrophages, leading to enhanced accumulation at inflammatory sites. Furthermore, ROSI-loaded Effero-RLP effectively alleviates inflammation and protects colon tissue from injury in the colitis mouse model, which is abolished by deletion of macrophages from mice model. In conclusion, the study highlights the potential of macrophage targeting using efferocytosis biomimetic liposomes. The development of Effero-RLP presents novel and promising strategies for alleviating inflammation.


Assuntos
Sistemas de Liberação de Medicamentos , Inflamação , Lipossomos , Macrófagos , Animais , Camundongos , Biomimética/métodos , Colite/tratamento farmacológico , Colite/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Eferocitose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Rosiglitazona/farmacologia
8.
Adv Mater ; 36(19): e2311964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302097

RESUMO

CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.


Assuntos
Sistemas CRISPR-Cas , Macrófagos , Traumatismos dos Tendões , Macrófagos/metabolismo , Animais , Camundongos , Traumatismos dos Tendões/terapia , Traumatismos dos Tendões/genética , Imunoterapia , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células RAW 264.7 , Osteopontina/genética , Osteopontina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Biochem Biophys Res Commun ; 702: 149627, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340655

RESUMO

Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Animais , Coelhos , Ácido Hialurônico/química , Nanopartículas/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Aterosclerose/diagnóstico por imagem
10.
Small ; 20(25): e2307247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243871

RESUMO

Oral treatment of colon diseases with the CRISPR/Cas9 system has been hampered by the lack of a safe and efficient delivery platform. Overexpressed CD98 plays a crucial role in the progression of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). In this study, lipid nanoparticles (LNPs) derived from mulberry leaves are functionalized with Pluronic copolymers and optimized to deliver the CRISPR/Cas gene editing machinery for CD98 knockdown. The obtained LNPs possessed a hydrodynamic diameter of 267.2 nm, a narrow size distribution, and a negative surface charge (-25.6 mV). Incorporating Pluronic F127 into LNPs improved their stability in the gastrointestinal tract and facilitated their penetration through the colonic mucus barrier. The galactose end groups promoted endocytosis of the LNPs by macrophages via asialoglycoprotein receptor-mediated endocytosis, with a transfection efficiency of 2.2-fold higher than Lipofectamine 6000. The LNPs significantly decreased CD98 expression, down-regulated pro-inflammatory cytokines (TNF-α and IL-6), up-regulated anti-inflammatory factors (IL-10), and polarized macrophages to M2 phenotype. Oral administration of LNPs mitigated UC and CAC by alleviating inflammation, restoring the colonic barrier, and modulating intestinal microbiota. As the first oral CRISPR/Cas9 delivery LNP, this system offers a precise and efficient platform for the oral treatment of colon diseases.


Assuntos
Sistemas CRISPR-Cas , Lipídeos , Morus , Nanopartículas , Folhas de Planta , Nanopartículas/química , Folhas de Planta/química , Animais , Administração Oral , Morus/química , Lipídeos/química , Camundongos , Doenças do Colo/terapia , Humanos , Masculino , Lipossomos
11.
Acta Biomater ; 177: 332-346, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290689

RESUMO

Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 µg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.


Assuntos
Lesão Pulmonar Aguda , Compostos Organometálicos , Ácidos Picolínicos , Fator de Necrose Tumoral alfa , Humanos , Masculino , Camundongos , Animais , Interferência de RNA , Fator de Necrose Tumoral alfa/metabolismo , Mananas , Pulmão , RNA Interferente Pequeno/farmacologia , Lesão Pulmonar Aguda/terapia , Anti-Inflamatórios/farmacologia , Guanidinas
12.
Int J Biol Macromol ; 260(Pt 2): 128818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103669

RESUMO

Herein, a ß-1,3-D-glucan based yeast cell wall loaded with co-loaded nanoparticles of Rhein (RH) and Emodin (EMO), was developed for the combined treatment of ulcerative colitis (UC) by modulating gut microbiota and the Th17/Treg cell balance. This was achieved through an oral "nano-in-micro" advanced drug delivery system. Specifically, RH was grafted onto the HA chain via disulfide bonds to synthesize a reduction-sensitive carrier material and then used to encapsulate EMO to form nanoparticles with a specific drug ratio (denoted as HA-RH/EMO NPs). As anticipated, HA-RH/EMO NPs were encased within the "nests"-yeast cell wall microparticles (YPs), efficiently reach the colon and then released gradually, this occurs mainly due to the degradation of ß-1,3-D-glucan by ß-glucanase. Additionally, HA-RH/EMO NPs demonstrated a significant reduction-sensitive effect in GSH stimulation evaluations and a remarkable ability to target macrophages in in vitro cell uptake studies. Notably, HA-RH/EMO NYPs reduced inflammatory responses by inhibiting the PI3K/Akt signaling pathway. Even more crucially, the oral delivery and drug combination methods significantly enhanced the regulatory effects of HA-RH/EMO NYPs on gut microbiota and the Th17/Treg balance. Overall, this research marks the first use of YPs to encapsulate two components, RH and EMO, presenting a promising therapeutic strategy for UC.


Assuntos
Antraquinonas , Colite Ulcerativa , Emodina , Microbiota , Nanopartículas , Proteoglicanas , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Emodina/farmacologia , Emodina/química , Glucanos/uso terapêutico , Saccharomyces cerevisiae , Fosfatidilinositol 3-Quinases , Nanopartículas/química
13.
Heliyon ; 9(11): e21939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027656

RESUMO

Purpose: Anti-leishmanial medications administered by oral and parenteral routes are less effective for treatment of cutaneous leishmaniasis (CL) and cause toxicity, hence targeted drug delivery is an efficient way to improve drug availability for CL with reduced toxicity. This study aimed to develop, characterize and evaluate nitazoxanide and quercetin co-loaded nanotransfersomal gel (NTZ-QUR-NTG) for the treatment of CL. Methods: NTZ-QUR-NT were prepared by thin film hydration method and were statistically optimized using Box-Behnken design. To ease the topical delivery and enhance the retention time, the NTZ-QUR-NT were dispersed in 2 % chitosan gel. Moreover, in-vitro drug release, ex-vivo permeation, macrophage uptake, cytotoxicity and anti-leishmanial assays were performed. Results: The optimized formulation indicated mean particle size 210 nm, poly dispersity index (PDI) 0.16, zeta potential (ZP) -15.1 mV and entrapment efficiency (EE) of NTZ and QUR was 88 % and 85 %, respectively. NTZ-QUR-NT and NTZ-QUR-NTG showed sustained release of the incorporated drugs as compared to the drug dispersions. Skin permeation of NTZ and QUR in NTZ-QUR-NTG was 4 times higher in comparison to the plain gels. The NTZ-QUR-NT cell internalization was almost 10-folds higher than NTZ-QUR dispersion. The cytotoxicity potential (CC50) of NTZ-QUR-NT (71.95 ± 3.32 µg/mL) was reduced as compared to NTZ-QUR dispersion (49.77 ± 2.15 µg/mL. A synergistic interaction was found between NTZ and QUR. Moreover, in-vitro anti-leishmanial assay presented a lower IC50 value of NTZ-QUR-NT as compared to NTZ-QUR dispersion. Additionally, a significantly reduced lesion size was observed in NTZ-QUR-NTG treated BALB/c mice, indicating its antileishmanial potential. Conclusion: It can be concluded that nanotransfersomal gel has the capability to retain and permeate the incorporated drugs through stratum corneum and induce synergetic anti-leishmanial effect of NTZ and QUR against cutaneous leishmaniasis.

14.
Front Biosci (Landmark Ed) ; 28(9): 207, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37796698

RESUMO

Tumor-associated macrophages (TAMs) are the most abundant infiltrating immune cells in the tumor microenvironment (TME) and play an important role in tumor progression. Clinically, the increase of TAMs infiltration is linked to poor prognosis of patients with various cancer types. Multiple studies have demonstrated that reducing or reprogramming TAMs can inhibit the occurrence or development of tumors. Therefore, TAMs have been identified as novel targets for the treatment of cancer therapy. In this review, the origin, polarization, roles, and targeting of TAMs in malignancies, are discussed.


Assuntos
Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos
15.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817142

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Macrófagos , Tuberculose/tratamento farmacológico , Rifampina/farmacologia , Ferro
16.
J Nanobiotechnology ; 21(1): 321, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679849

RESUMO

Ulcerative colitis (UC) faces some barriers in oral therapy, such as how to safely deliver drugs to the colon and accumulate in the colon lesions. Hence, we report an advanced yeast particles system loaded with supramolecular nanoparticles with ROS scavenger (curcumin) to treat UC by reducing oxidative stress state and inflammatory response and accelerating the reprogramming of macrophages. In this study, the dual-sensitive materials are bonded on ß-cyclodextrin (ß-CD), the D-mannose (Man) is modified to adamantane (ADA), and then loaded with curcumin (CUR), to form a functional supramolecular nano-delivery system (Man-CUR NPs) through the host-guest interaction. To improve gastrointestinal stability and colonic accumulation of Man-CUR NPs, yeast cell wall microparticles (YPs) encapsulated Man-CUR NPs to form Man-CUR NYPs via electrostatic adsorption and vacuum extrusion technologies. As expected, the YPs showed the strong stability in complex gastrointestinal environment. In addition, the Man modified supramolecular nanoparticles demonstrated excellent targeting ability to macrophages in the in vitro cellular uptake study and the pH/ROS sensitive effect of Man-CUR NPs was confirmed by the pH/ROS-dual stimulation evaluation. They also enhanced lipopolysaccharide (LPS)-induced inflammatory model in macrophages through downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and scavenging the excess ROS. Notably, in DSS-induced mice colitis model, Man-CUR NYPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways, alleviate oxidative stress by Nrf2/HO-1 signaling pathway, promote macrophages reprogramming and improve the favorable recovery of the damaged colonic tissue. Taken together, this study not only provides strategy for "supramolecular curcumin nanoparticles with pH/ROS sensitive and multistage therapeutic effects" in "advanced yeast particles", but also provided strong theoretical support multi-effect therapy for UC.


Assuntos
Colite Ulcerativa , Curcumina , Animais , Camundongos , Saccharomyces cerevisiae , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Curcumina/farmacologia , Espécies Reativas de Oxigênio , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
17.
Mol Ther Oncolytics ; 30: 227-237, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37680255

RESUMO

Immune-based therapies represent a new paradigm in the treatment of multiple cancers, where they have helped achieve durable and safe clinical responses in a growing subset of patients. While a wealth of information is available concerning the use of these agents in treating the more common malignancies, little has been reported about the use of immunotherapies against malignant peripheral nerve sheath tumors (MPNSTs), a rare form of soft tissue sarcoma that arises from the myelin sheaths that protect peripheral nerves. Surgical resection has been the mainstay of therapy in MPNSTs, but the recurrence rate is as high as 65%, and chemotherapy is generally ineffective. The immune contexture of MPNSTs, replete with macrophages and a varying degree of T cell infiltration, presents multiple opportunities to design meaningful therapeutic interventions. While preliminary results with macrophage-targeting strategies and oncolytic viruses are promising, identifying the subset of patients that respond to immune-based strategies will be a milestone. As part of our effort to help advance the use of immunotherapy for MPNSTs, here we describe recent insights regarding the immune contexture of MPNSTs, discuss emerging immune-based strategies, and provide a brief overview of potential biomarkers of response.

18.
Int J Biol Macromol ; 253(Pt 5): 127131, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776921

RESUMO

As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Saccharomyces cerevisiae/química , Glucanos/química , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Macrófagos , beta-Glucanas/química
19.
Carbohydr Polym ; 319: 121163, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567689

RESUMO

Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based ß-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based ß-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based ß-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based ß-glucan. Subsequently, we further summarized the current preparation methods of yeast-based ß-glucan carriers and the strategies for preparing yeast-based ß-glucan drug delivery systems. In addition, we focus on discussing the applications of ß-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the ß-glucan drug delivery system are introduced.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Humanos , Saccharomyces cerevisiae/química , beta-Glucanas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Macrófagos , Administração Oral
20.
Int J Pharm ; 642: 123189, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37391107

RESUMO

The packaging of antimicrobials/chemotherapeutics into nanoliposomes can enhance their activity while minimizing toxicity. However, their use is still limited owing to inefficient/inadequate loading strategies. Several bioactive(s) which are non ionizable, and poorly aqueous soluble cannot be easily encapsulated into aqueous core of liposomes by using conventional means. Such bioactive(s) however could be encapsulated in the liposomes by forming their water soluble molecular inclusion complex with cyclodextrins. In this study, we developed Rifampicin (RIF) - 2-hydroxylpropyl-ß-cyclodextrin (HP-ß-CD) molecular inclusion complex. The HP-ß-CD-RIF complex interaction was assessed by using computational analysis (molecular modeling). The HP-ß-CD-RIF complex and Isoniazid were co-loaded in the small unilamellar vesicles (SUVs). Further, the developed system was functionalized with transferrin, a targeting moiety. Transferrin functionalized SUVs (Tf-SUVs) could preferentially deliver their payload intracellularly in the endosomal compartment of macrophages. In in vitro study on infected Raw 264.7 macrophage cells revealed that the encapsulated bioactive(s) could eradicate the pathogen more efficiently than free bioactive(s). In vivo studies further revealed that the Tf-SUVs could accumulate and maintain intracellular bioactive(s) concentrations in macrophages. The study suggests Tf-SUVs as a promising module for targeted delivery of a drug combination with improved/optimal therapeutic index and effective clinical outcomes.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Transferrina , 2-Hidroxipropil-beta-Ciclodextrina , Antituberculosos , Rifampina , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA