Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Hazard Mater ; 480: 135926, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307018

RESUMO

Cadmium (Cd) pollution poses a significant ecological risk to mangrove ecosystems. Trehalose has excellent potential to mitigate the adverse effects of heavy metals. Unfortunately, the mechanisms related to trehalose-mediated heavy metal tolerance in plants remain elusive. In the present study, we firstly found that Cd induced the accumulation of trehalose and the differential expression of trehalose biosynthesis genes in the roots of mangrove plant Avicennia marina. Then, we found that the application of exogenous trehalose could alleviate the negative effects of Cd on A. marina by phenotypic observation. In addition, photosynthetic parameters and cellular ultrastructure analyses demonstrated that exogenous trehalose could improve the photosynthesis and stabilize the chloroplast and nuclear structure of the leaves of A. marina. Besides, exogenous trehalose could inhibit the Cd2+ influx from the root to reduce the Cd2+ content in A. marina. Subsequently, substrate sensitivity assay combined with ion uptake analysis using yeast cells showed that several trehalose biosynthesis genes may have a regulatory function for Cd2+ transport. Finally, we further identified a positive regulatory factor, AmTPS6, which enhances the Cd tolerance in transgenic Arabidopsis thaliana. Taken together, these findings provide new understanding to the mechanism of Cd tolerance in mangrove A. marina at trehalose aspect and a theoretical basis for the conservation of mangroves in coastal wetlands.

2.
Braz J Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028532

RESUMO

Mangroves are coastal environments that provide resources for adjacent ecosystems due to their high productivity, organic matter decomposition, and carbon cycling by microbial communities in sediments. Since the industrial revolution, the increase of Greenhouse Gases (GHG) released due to fossil fuel burning led to many environmental abnormalities such as an increase in average temperature and ocean acidification. Based on the hypothesis that climate change modifies the microbial diversity associated with decaying organic matter in mangrove sediments, this study aimed to evaluate the microbial diversity under simulated climate change conditions during the litter decomposition process and the emission of GHG. Thus, microcosms containing organic matter from the three main plant species found in mangroves throughout the State of São Paulo, Brazil (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) were incubated simulating climate changes (increase in temperature and pH). The decay rate was higher in the first seven days of incubation, but the differences between the simulated treatments were minor. GHG fluxes were higher in the first ten days and higher in samples under increased temperature. The variation in time resulted in substantial impacts on α-diversity and community composition, initially with a greater abundance of Gammaproteobacteria for all plant species despite the climate conditions variations. The PCoA analysis reveals the chronological sequence in ß-diversity, indicating the increase of Deltaproteobacteria at the end of the process. The GHG emission varied in function of the organic matter source with an increase due to the elevated temperature, concurrent with the rise in the Deltaproteobacteria population. Thus, these results indicate that under the expected climate change scenario for the end of the century, the decomposition rate and GHG emissions will be potentially higher, leading to a harmful feedback loop of GHG production. This process can happen independently of an impact on the bacterial community structure due to these changes.

3.
Phytochemistry ; 220: 114000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278465

RESUMO

Sumalarins D-G (1-4), four previously undescribed curvularin derivatives, along with two known related metabolites, curvularin (5) and dehydrocurvularin (6), were isolated and identified from the mangrove-derived fungus Penicillium sumatrense MA-325. Among them, sumalarin D (1) represents a unique example of curvularin derivative featuring a 5-methylfuran-2-yl-methyl group. Their structures were elucidated based on analysis of NMR and MS data as well as comparison of ECD spectra and quantum chemical calculations of NMR, and compound 1 was confirmed by X-ray crystallographic analysis. Compounds 1, 2, 5, and 6 are active against aquatic pathogenic bacteria Vibrio alginolyticus and V. harveyi with MIC values ranging from 4 to 64 µg/mL, while compound 6 is cytotoxic against tumor cell lines 5673, HCT 116, 786-O, and Hela with IC50 values of 3.5, 10.6, 10.9, and 14.9 µM, respectively.


Assuntos
Antineoplásicos , Penicillium , Zearalenona/análogos & derivados , Estrutura Molecular , Penicillium/química , Antineoplásicos/química
4.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37769324

RESUMO

Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.


Assuntos
Primulaceae , Glândula de Sal , Meio Ambiente , Folhas de Planta/metabolismo , Primulaceae/fisiologia , Cloreto de Sódio/metabolismo
5.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889134

RESUMO

A novel Streptomyces strain, designated as HNM0663T, was isolated from the stem of a mangrove plant (Avicennia marina) collected from the coast of Chengmai city, Hainan Island, PR China. On the basis of the alignment of 16S rRNA gene sequences, strain HNM0663T was closely related to Streptomyces lichenis LCR6-01T (98.67 %), Streptomyces nanningensis YIM 33098T (98.12 %) and Streptomyces palmae CMU-AB204T (97.93 %). Genome-based comparisons showed that strain HNM0663T was distinguished from its closest related species with 80.3 % average nucleotide identity and 20.2 % digital DNA-DNA hybridization values. The main cellular fatty acids were iso-C16 : 0, iso-C15 : 0 and anteiso-C15 : 0. The main menaquinones were MK-9 (H6), MK-9 (H4) and MK-8 (H4). The predominant phospholipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylcholine. Based on these polyphasic taxonomy results, strain HNM0663T should represent a novel Streptomyces species, for which the name Streptomyces chengmaiensis sp. nov. is proposed. The type strain is HNM 0663T (=CCTCC AA 2019075T=LMG 31909T).


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Fosfolipídeos
6.
Chem Biodivers ; 20(8): e202300692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418543

RESUMO

Two new compounds including one apotirucallane protolimonoid, xylogranatriterpin A (1), and one glabretal protolimonoid, xylocarpusin A (2), along with three known related compounds were isolated from the twigs and leaves of the Chinese mangrove Xylocarpus granatum. The apotirucallane xylogranatriterpin A (1) bears an unprecedented 24-ketal carbon connecting ring E with an epoxide ring. The structures of new compounds were elucidated by extensive spectroscopic analysis and by comparison of the spectroscopic data with those reported in the literatures. Plausible biosynthetic pathway to xylogranatriterpin A (1) was also proposed. None of them showed cytotoxic, neuroprotective, or protein tyrosine phosphatase 1B (PTP1B) inhibitory activity.


Assuntos
Limoninas , Meliaceae , Triterpenos , Limoninas/química , Meliaceae/química , Estrutura Molecular , Triterpenos/química
7.
PeerJ ; 11: e15529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366424

RESUMO

Mangrove plants contain a variety of secondary metabolites, including flavonoids, polyphenols, and volatiles, which are important for their survival and adaptation to the coastal environment, as well as for producing bioactive compounds. To reveal differences in these compounds among five mangrove species' leaf, root, and stem, the total contents of flavonoids and polyphenols, types and contents of volatiles were determined, analyzed and compared. The results showed that Avicennia marina leaves contained the highest levels of flavonoids and phenolics. In mangrove parts, flavonoids are usually higher than phenolic compounds. A total of 532 compounds were detected by a gas chromatography-mass spectrometry (GC-MS) method in the leaf, root, and stem parts of five mangrove species. These were grouped into 18 classes, including alcohols, aldehydes, alkaloids, alkanes, etc. The number of volatile compounds in A. ilicifolius (176) and B. gymnorrhiza (172) was lower than in the other three species. The number of volatile compounds and their relative contents differed among all three parts of five mangrove species, where the mangrove species factor had a greater impact than the part factor. A total of 71 common compounds occurring in more than two species or parts were analyzed by a PLS-DA model. One-way ANOVA revealed 18 differential compounds among mangrove species and nine differential compounds among parts. Principal component analysis and hierarchical clustering analysis showed that both unique and common compounds significantly differed in composition and concentration between species and parts. In general, A. ilicifolius and B. gymnorrhiza differed significantly from the other species in terms of compound content, while the leaves differed significantly from the other parts. VIP screening and pathway enrichment analysis were performed on 17 common compounds closely related to mangrove species or parts. These compounds were mainly involved in terpenoid pathways such as C10 isoprenoids and C15 isoprenoids and fatty alcohols. The correlation analysis showed that the content of flavonoids/phenolics, the number of compounds, and the content of some common compounds in mangroves were correlated with their salt and waterlogging tolerance levels. These findings will help in the development of genetic varieties and medicinal utilization of mangrove plants.


Assuntos
Avicennia , Polifenóis , Polifenóis/análise , Flavonoides/análise , Folhas de Planta/química , Terpenos/análise
8.
Plants (Basel) ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050056

RESUMO

MYB transcription factors constitute one of the largest gene families in plants and play essential roles in the regulation of plant growth, responses to stress, and a wide variety of physiological and biochemical processes. In this study, 204 MYB proteins (HhMYBs) were identified in the Hibiscus hamabo Sieb. et Zucc (H. hamabo) genome and systematically analyzed based on their genomic sequence and transcriptomic data. The candidate HhMYB proteins and MYBs of Arabidopsis thaliana were divided into 28 subfamilies based on the analysis of their phylogenetic relationships and their motif patterns. Expression analysis using RNA-seq and quantitative real-time PCR (qRT-PCR) indicated that most HhMYBs are differentially regulated under drought and salt stresses. qRT-PCR analysis of seven selected HhMYBs suggested that the HhMYB family may have regulatory roles in the responses to stress and hormones. This study provides a framework for a more comprehensive analysis of the role of MYBs in the response to abiotic stress in H. hamabo.

9.
BMC Plant Biol ; 22(1): 274, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659253

RESUMO

BACKGROUND: WRKY transcription factors play key roles in plant development processes and stress response. Kandelia obovata is the most cold-resistant species of mangrove plants, which are the important contributors to coastal marine environment. However, there is little known about the WRKY genes in K. obovata. RESULTS: In this study, a WRKY transcription factor gene, named KoWRKY40, was identified from mangrove plant K. obovata. The full-length cDNA of KoWRKY40 gene was 1420 nucleotide bases, which encoded 318 amino acids. The KoWRKY40 protein contained a typical WRKY domain and a C2H2 zinc-finger motif, which were common signatures to group II of WRKY family. The three-dimensional (3D) model of KoWRKY40 was formed by one α-helix and five ß-strands. Evolutionary analysis revealed that KoWRKY40 has the closest homology with a WRKY protein from another mangrove plant Bruguiera gymnorhiza. The KoWRKY40 protein was verified to be exclusively located in nucleus of tobacco epidermis cells. Gene expression analysis demonstrated that KoWRKY40 was induced highly in the roots and leaves, but lowly in stems in K. obovata under cold stress. Overexpression of KoWRKY40 in Arabidopsis significantly enhanced the fresh weight, root length, and lateral root number of the transgenic lines under cold stress. KoWRKY40 transgenic Arabidopsis exhibited higher proline content, SOD, POD, and CAT activities, and lower MDA content, and H2O2 content than wild-type Arabidopsis under cold stress condition. Cold stress affected the expression of genes related to proline biosynthesis, antioxidant system, and the ICE-CBF-COR signaling pathway, including AtP5CS1, AtPRODH1, AtMnSOD, AtPOD, AtCAT1, AtCBF1, AtCBF2, AtICE1, AtCOR47 in KoWRKY40 transgenic Arabidopsis plants. CONCLUSION: These results demonstrated that KoWRKY40 conferred cold tolerance in transgenic Arabidopsis by regulating plant growth, osmotic balance, the antioxidant system, and ICE-CBF-COR signaling pathway. The study indicates that KoWRKY40 is an important regulator involved in the cold stress response in plants.


Assuntos
Arabidopsis , Rhizophoraceae , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Rhizophoraceae/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328474

RESUMO

NAC transcription factor is one of the largest plant gene families, participating in the regulation of plant biological and abiotic stresses. In this study, 182 NAC proteins (HhNACs) were identified based on genomic datasets of Hibiscus hamabo Sieb. et Zucc (H. hamabo). These proteins were divided into 19 subfamilies based on their phylogenetic relationship, motif pattern, and gene structure analysis. Expression analysis with RNA-seq revealed that most HhNACs were expressed in response to drought and salt stress. Research of quantitative real-time PCR analysis of nine selected HhNACs supported the transcriptome data's dependability and suggested that HhNAC54 was significantly upregulated under multiple abiotic stresses. Overexpression of HhNAC54 in Arabidopsis thaliana (A. thaliana) significantly increased its tolerance to salt. This study provides a basis for a comprehensive analysis of NAC transcription factor and insight into the abiotic stress response mechanism in H. hamabo.


Assuntos
Arabidopsis , Hibiscus , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Hibiscus/genética , Hibiscus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Mar Environ Res ; 176: 105611, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344783

RESUMO

Laguncularia racemosa (a white mangrove) is an exotic mangrove species commonly distributed in southern intertidal zones in China since it was introduced for reforestation purposes in 1999. However, the invasiveness of this exotic species and its cold adaptability have rarely been reported. The present work determined the cold resistance level of L. racemosa and its recovery from cold stress, aiming to speculate its potential invasive capability in China. Results showed that the germination of L. racemosa seeds in sand or in simulated sea field models was significantly inhibited by a series of cold treatments, with no germination at 5 °C and decreased in germination at low temperatures (15-25 °C). Low temperature also reduced net photosynthetic rate (A), water use efficiency (WUE), transpiration rate (E), and stomatal conductance (Gs) of the seedlings of L. racemosa. On the other hand, cold stress up-regulated in leaves of malondialdehyde (MDA) and antioxidant activities, including superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX). Additionally, these physiological and biochemical indexes of cold-stressed L. racemosa could recover to the original levels if the plants were returned to room temperature with a few exceptions. For instance, the cold exposure duration altered seedlings' physiology, but the photosynthetic related activities could not recover if cold treatment lasted for 120 h. This study suggests that L. racemosa can tolerate low temperatures to some extent, thus settle and even invade the coast of China at high latitudes having cold winter, which poses a challenge to the conservation and management of local mangrove ecosystems.


Assuntos
Combretaceae , Ecossistema , Temperatura Baixa , Combretaceae/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Plântula
12.
J Asian Nat Prod Res ; 24(7): 679-684, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34292113

RESUMO

A new isocoumarin, penicimarin N (1), along with five known compounds (2-6), were isolated from the mangrove-derived fungus Penicillium sp. TGM112. The structure of 1 was elucidated on the basis of extensive spectroscopic data analysis, and the absolute configuration of 1 was determined by comparison of their circular dichroism (CD) spectra with the literature. The structures of known compounds were determined by comparison with the literature data. All the isolated compounds were examined for their antioxidant and α-glucosidase activities. Compound 1 showed strong antioxidant activity with the IC50 value of 1.0 mM, and 1 also exhibited moderate inhibitory activity against α-glucosidase with the IC50 value of 620 µM.


Assuntos
Isocumarinas , Penicillium , Fungos/metabolismo , Estrutura Molecular , Penicillium/química , alfa-Glucosidases/metabolismo
13.
J Biomol Struct Dyn ; 40(4): 1490-1502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-32996435

RESUMO

Gallic acid (PubChem CID: 370) and quercetin (PubChem CID: 5280343) are major phenolic compounds in many mangrove plants that have been related to health cure. In the present study, the active fractions namely gallic acid (1) and quercetin (2) were isolated from the methanolic extract of leaves of Ceriops tagal in a Tropical mangrove ecosystem of Andaman and Nicobar Island (ANI), India. The chemical structures were determined by spectroscopic analysis: Fourier-Transform Infrared spectroscopy (FT-IR), 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy, and High-resolution mass spectrometry (HRMS). The anticancer activity of isolated compounds (1) and (2) were evaluated by in vitro assays against two human cancer cell lines namely, HeLa (Cervical) and MDA-MB231 (Breast) cancer cells revealed that IC50 values of gallic acid (HeLa: 4.179197 ± 0.45 µg/ml; MDA-MB231: 80.0427 ± 0.19 µg/ml at 24 h) and quercetin (HeLa: 99.914 ± 0.18 µg/ml; MDA-MB231: 18.288382 ± 0.12 µg/ml at 24 h), respectively. Antioxidant properties of gallic acid (1) and quercetin (2) are found to be IC50 value of 0.77 ± 0.41 µg/ml and 1.897 ± 0.81 µg/ml, respectively. Molecular docking results explained that gallic acid (1) and quercetin (2) showed estimated binding free energy (ΔG) of -5.4 and -6.9 kcal/mol towards drug target Bcl-B protein, respectively. The estimated inhibition constant (Ki) for these two molecules are 110 and 8.75 µM, respectively. The MD simulation additionally supported that quercetin molecule is significantly improved the structural stability of Bcl-B protein. The present study provides key insights about the importance of polyphenols, and thus leads to open the therapeutic route for anti-cancer drug discovery process.Communicated by Ramaswamy H. Sarma.


Assuntos
Quercetina , Rhizophoraceae , Antioxidantes/farmacologia , Ecossistema , Ácido Gálico/farmacologia , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Quercetina/farmacologia , Rhizophoraceae/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Nat Prod Res ; 36(7): 1774-1780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32901507

RESUMO

Phytochemical investigation of the leaves of Lepisanthes rubiginosa led to the isolation of two new glycosides, lepisantheside A (1) and lepisantheside B (2), together with two known compounds acutoside A (3) and 3-O-[ß-D-xylopyranosyl-(1→3)-ß-D-glucopyranosyl-]-oleanolic acid (4). Their structures were elucidated by means of spectroscopic methods (HR-ESI-MS, 1D and 2D NMR), and by comparison with the reported data. The cytotoxicity of compounds 1-4 against four human cancer cell lines (KB, HepG2, SK-LU-1 and MCF7) was evaluated. Compound 4 exhibited significant activity with IC50 values of 9.57, 6.66, 6.97 and 18.32 µM, respectively, in comparison with the postive control ellipticine.


Assuntos
Ácido Oleanólico , Triterpenos , Glicosídeos/química , Humanos , Estrutura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Folhas de Planta/química , Triterpenos/química , Vietnã
15.
J Proteomics ; 248: 104349, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411764

RESUMO

Low temperature in winter was the most crucial abiotic stress that limits the mangrove afforestation northward. Previous study demonstrated that Sonneratia apetala initially transplanted to high latitude area exhibited a stronger plasticity of cold tolerance. To clarify the underlying mechanism, the physiological and proteomic responses to chilling stress were investigated in S. apetala leaves. Our results found that cold-acclimated seedlings had lower relative electrolyte leakage and MDA content than non-acclimated seedlings. On the contrary, higher chlorophyll content and photosynthetic capacity were observed in cold-acclimated seedlings. With proteomic analyses, the differentially accumulated proteins (DAPs) involved in ROS scavenging, photosynthesis and energy metabolism, carbohydrate metabolism, cofactor biosynthesis, and protein folding were suggested to play important roles in enhancing the cold tolerance of S. apetala. However, the down-regulation DAPs were suggested as a tradeoff between plant growth and chilling response. By the protein-protein interaction analyses, translation elongation factor G, chlorophyll A-B binding protein and ascorbate peroxidase 1 were suggested as the important regulators in cold-acclimated S. apetala seedlings under chilling stress. Based on the above results, a schematic diagram describing the mechanism of cold tolerance of exotic mangrove species S. apetala that was achieved by cold acclimation was presented in this study. SIGNIFICANCE: The major environmental factor limits the mangrove afforestation northward is the low temperature in winter. Previous study reported that Sonneratia apetala grew in high latitude exhibited a higher cold tolerance than that in low latitude, which was suggested as a result of cold acclimation. To further understand "how cold acclimation enhance the cold tolerance in S. apetala", the response of S. apetala subjected to chilling stress with or without cold acclimation was investigated in this study at the physiological and proteomic aspects. Our physiological results showed that S. apetala seedlings treated with cold acclimation exhibited a higher tolerance under chilling stress than that without cold acclimation. By using the comparative proteomic approaches and bioinformatic analyses, various biological processes were suggested to play an important role in enhancing the cold tolerance of S. apetala under chilling stress, such as ROS scavenging, photosynthesis and energy metabolism, carbohydrate metabolism, cofactor biosynthesis, and protein folding. Among these differentially accumulated proteins, translation elongation factor G (eEF-G), chlorophyll A-B binding protein (CAB) and ascorbate peroxidase 1 (APX1) were identified as the hub proteins function in coordinated regulating ROS scavenging, photosynthesis and protein biosynthesis in chloroplast and subsequently enhanced the cold tolerance of S. apetala under chilling stress. Our results provided a further understanding of cold acclimation in improving the cold tolerance in exotic mangrove species S. apetala.


Assuntos
Proteoma , Plântula , Aclimatação , Clorofila A , Temperatura Baixa , Proteômica
16.
Mitochondrial DNA B Resour ; 6(3): 1164-1165, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33829081

RESUMO

Dolichandrone spathacea(L. F.) K. Schum. is an excellent tree species for coastal protection forests. In this study, the complete chloroplast genome sequence of D. spathacea was obtained through high-throughput sequencing. The length of chloroplast genome was 159,156 bp in length, containing a large single-copy region (LSC) of 86,053 bp, a small single-copy region (SSC) of 12,635 bp, and a pair of inverted repeats (IRa and IRb) regions of 30,234 bp. The chloroplast genome with 37.95% GC content, contained 134 genes, including 90 protein-coding genes, 8 rRNA genes, and 36 tRNA genes. Phylogenetic analysis with the reported chloroplast sequences shows that D. spathacea is more closely related to Spathodea campanulata.

17.
Chem Biodivers ; 18(3): e2000928, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33555653

RESUMO

Nine new ß-resorcylic acid derivatives, (15S)-de-O-methyllasiodiplodin (1), (13S,15S)-13-hydroxy-de-O-methyllasiodiplodin (2), (14S,15S)-14-hydroxy-de-O-methyllasiodiplodin (3), (13R,14S,15S)-13,14-dihydroxy-de-O-methyllasiodiplodin (4), ethyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (5), ethyl 2,4-dihydroxy-6-(8-hydroxyheptyl)benzoate (6), ethyl 2,4-dihydroxy-6-(4-methoxycarbonylbutyl)benzoate (7), 3-(2-ethoxycarbonyl-3,5-dihydroxyphenyl)propionic acid (8), and isobutyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (9), together with a known ethyl 2,4-dihydroxy-6-(8-oxononyl)benzoate (10) were obtained from Lasiodiplodia theobromae GC-22. The structures of these compounds were elucidated by extensive spectroscopic analyses. Compounds 1, 3, and 6 showed growth inhibitory effects against Digitaria ciliaris. Conversely, treatment with compounds 5, 6, 7, 9, and 10 stimulated elongation activity toward the root of Lactuca sativa. These data expand the repertoire of new ß-resorcylic acid derivatives that may function as lead compounds in the synthesis of new agrochemical agents.


Assuntos
Agroquímicos/farmacologia , Ascomicetos/química , Digitaria/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Lactuca/efeitos dos fármacos , Agroquímicos/química , Agroquímicos/isolamento & purificação , Digitaria/crescimento & desenvolvimento , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Lactuca/crescimento & desenvolvimento , Estrutura Molecular , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estereoisomerismo
18.
BMC Plant Biol ; 21(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407136

RESUMO

BACKGROUND: Low temperature is a major abiotic stress that seriously limits mangrove productivity and distribution. Kandelia obovata is the most cold-resistance specie in mangrove plants, but little is known about the molecular mechanism underlying its resistance to cold. Osmotin is a key protein associated with abiotic and biotic stress response in plants but no information about this gene in K. obovata was reported. RESULTS: In this study, a cDNA sequence encoding osmotin, KoOsmotin (GenBank accession no. KP267758), was cloned from mangrove plant K. obovata. The KoOsmotin protein was composed of 221 amino acids and showed a calculated molecular mass of 24.11 kDa with pI 4.92. The KoOsmotin contained sixteen cysteine residues and an N-terminal signal peptide, which were common signatures to most osmotins and pathogenesis-related 5 proteins. The three-dimensional (3D) model of KoOsmotin, contained one α-helix and eleven ß-strands, was formed by three characteristic domains. Database comparisons of the KoOsmotin showed the closest identity (55.75%) with the osmotin 34 from Theobroma cacao. The phylogenetic tree also revealed that the KoOsmotin was clustered in the branch of osmotin/OLP (osmotin-like protien). The KoOsmotin protein was proved to be localized to both the plasma membrane and cytoplasm by the subcellular localization analysis. Gene expression showed that the KoOsmotin was induced primarily and highly in the leaves of K. obovata, but less abundantly in stems and roots. The overexpressing of KoOsmotin conferred cold tolerance in Escherichia coli cells. CONCLUSION: As we known, this is the first study to explore the osmotin of K. obovata. Our study provided valuable clues for further exploring the function of KoOsmotin response to stress.


Assuntos
Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Análise de Sequência de DNA
19.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008561

RESUMO

Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.


Assuntos
Hibiscus/genética , Estresse Salino/genética , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
20.
Ecol Evol ; 10(20): 11838-11846, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33145004

RESUMO

The distribution of mangroves is influenced by the environment. We aimed to understand the ecological adaptability of various mangrove species within the range of the exotic species, Sonneratia apetala Buch.-Ham., in Dongzhai Harbor, Hainan Island, China. We used three niche breadth indexes (Simpson, Levins, and Shannon-Weiner) and two niche overlap indexes (Pianka and Levins) to quantitatively determine the niche characteristics of nine mangrove species. The results showed that the order of the niche breadth values of mangrove species was as follows: Aegiceras corniculatum (Linn.) Blanco > Kandelia obovata Sheue et al. > Bruguiera gymnorrhiza (L.) Poir. > Avicennia marina (Forsk.) Vierh. Hailanci > S. apetala > S. caseolaris (L.) Engl. > Rhizophora stylosa Griff > Ceriops tagal (Perr.) C. B. Rob. > B. sexangula (Lour.) Poir. Pearson correlation analysis revealed that the niche breadth of each population was significantly correlated with the importance value of the population in the whole sample (R1 = R2 = 0.771, R3 = 0.644, p < .05). The nine mangrove species were divided into three groups by Bray-Curtis cluster analysis; the groups were similar to the distribution of mangrove species in the natural state as determined by tide level. Niche similarity analysis showed that the niche similarity of most mangroves ranged between 0.5 and 0.8 and that the species pairs A. corniculatum-B. gymnorrhiza, A. corniculatum-Avicennia marina, and K. obovata-S. caseolaris were characterized by large niche similarity ratios. Although it had a moderate niche breadth, S. apetala had a relatively broad niche overlap with mangroves in the mid- and low-tide zones (S. caseolaris, A. corniculatum, K. obovata, and Avicennia marina), a moderate overlap with B. gymnorrhiza and R. stylosa, only a slight overlap with C. tagal, and no overlap with B. sexangular. There was no obvious linear relationship between niche width and niche overlap of mangroves. Due to its inefficiency in utilizing certain resources and relatively high degree of resource selection, it seems likely that S. apetala will not pose a threat to the survival of native plants, let alone completely replace native species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA