Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Morphol ; 281(9): 1059-1071, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448468

RESUMO

The most common European gastropod species, Arion vulgaris, is one of the most troublesome pests for private garden owners and commercial agriculturists. The sticky and hard to remove secretion produced by these animals allows them to overcome most artificial and natural barriers. However, this highly adherent biopolymer has recently shown great potential for novel wound-healing applications in medicine. Nevertheless, our knowledge of the underlying gland system is still limited and few studies on the ventral gland system are available. We studied the lateral and ventral pedal glands in Arion vulgaris to determine their secretory content histochemically and through lectin assays. Using these histological and histochemical methods we differentiate five gland types with different mucus composition in the lateral pedal region of the foot of Arion vulgaris. These contain sulphated and carboxylated mucosubstances (positive Alcian blue staining) but lack hexose-containing mucosubstances (negative PAS staining). In the ventral pedal region, four gland types can be differentiated producing sulphated and carboxylated mucosubstances. Within the ventral mucus, a high affinity for the lectins PNA and WGA is observed. While the lateral glands are histochemically negative for PAS, a positive staining with the lectin JAC is observed. Arion vulgaris shows clear morphological differences from other arionid species. This raises the question whether the variation in the chemistry of the secretory material and mucus composition is the result of different functions and/or is related to the animals' different environmental conditions. A comparison of some glands of Arion vulgaris with those of the helicid species Helix pomatia and Cepaea hortensis indicates morphological similarities.


Assuntos
Estruturas Animais/anatomia & histologia , Gastrópodes/anatomia & histologia , Estruturas Animais/ultraestrutura , Animais , Epitélio/anatomia & histologia , Epitélio/ultraestrutura , Gastrópodes/ultraestrutura , Muco/metabolismo , Espectrometria por Raios X
2.
J Morphol ; 279(2): 187-198, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098722

RESUMO

Although gastropods have been crawling through the ocean and on the land for 60 million years, we still know very little about the sticky mucus produced in their foot. Most research has been focused on marine species in particular and, to a lesser extent, on the well-known terrestrial species Arion vulgaris and Cornu aspersum. Within this study, we aim to characterize the foot anatomy of a smaller representative of the family Helicidae, the banded snail Cepaea hortensis. We are particularly interested in the microanatomy of the foot glands, their position, and the histochemical nature of their secretory content. Characterization of the dorsal foot region of Cepaea hortensis reveals four glands, differing in their size and in the granules produced. Histochemically, three of them react positively for sugars (PAS staining and lectin affinity tests for mannose, glucose and N-acetyl-d-glucosamine) and acidic proteins (positive Alcian blue and Toluidine blue staining), indicating the presence of acidic glycosaminoglycans. The fourth gland type does not react to any of these dyes. The ventral pedal region includes two different gland types, which are positive for the presence of acidic glycoproteins, with a lectin affinity for mannose only. A comparison with Helix pomatia indicates differences regarding the number of glands and their contents. In Helix, only three gland types are described in the dorsal region of the foot, which show a similar granular appearance but nevertheless differ in their chemical composition. Congruently, there are two gland types in the ventral region in both species, whereas in Helix an additional sugar moiety is found. This raises the question whether these differences between the pedal glandular systems of both helicid species are the result of protection or size-related adaptations, as they occur in the same habitat.


Assuntos
Estruturas Animais/anatomia & histologia , Pele/anatomia & histologia , Caramujos/anatomia & histologia , Estruturas Animais/citologia , Estruturas Animais/ultraestrutura , Animais , Extremidades/anatomia & histologia , Lectinas/metabolismo , Muco/metabolismo , Caramujos/citologia , Caramujos/ultraestrutura , Espectrometria por Raios X
3.
Aquat Toxicol ; 154: 12-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24854203

RESUMO

Bivalve molluscs, due to their sedentary mode of life and filter-feeding behavior, are very susceptible to pollutant bioaccumulation and used as sentinel organisms in the assessment of environment pollution. Herein we aimed to determine the in vivo, ex vivo and in vitro effects of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, in Anodonta cygnea shell growth mechanisms. For that, we evaluated the effect of 2,4-D (100 µM) exposure on the transepithelial short-circuit current (Isc), potential (Vt) and conductance (Gt), as well as on OME ion transport systems and intracellular pH (pHi). In vivo exposure to 2,4-D caused an increase of 50% on the Isc generated by OME and ex vivo addition of that compound to the apical side of OME also induced an Isc increase. Furthermore, 2,4-D was able to cause a pHi increase in isolated cells of OME. Noteworthy, when 2,4-D was added following the exposure to specific inhibitors of several membrane transporters identified as responsible for pHi maintenance in these cells, no significant effect was observed on pHi except when the V-type ATPase inhibitor was used, indicating an overlap with the effect of 2,4-D. Thus, we concluded that 2,4-D is able of enhancing the activity of the V-ATPases present on the OME of A. cygnea and that this effect seems to be due to a direct stimulation of those H(+) transporters present on the apical portion of the membrane of OME cells, which are vital for shell maintenance and growth. This study allows us to better understand the molecular mechanisms behind 2,4-D toxicity and its deleterious effect in aquatic ecosystems, with particular emphasis on those involved in shell formation of bivalves.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Anodonta/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Adenosina Trifosfatases/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epitélio/química , Epitélio/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos dos fármacos , Macrolídeos/farmacologia
4.
Ecotoxicol Environ Saf ; 97: 230-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23953926

RESUMO

Freshwater bivalves are used as sentinel organisms to detect pollutants effects in the aquatic environment due to their sedentary nature, filter-feeding behaviour. We aimed to determine the in vivo, ex vivo and in vitro influence of Diethylstilbestrol (DES), a widely used synthetic non-steroidal estrogen and endocrine disruptor, in Anodonta cygnea shell growth mechanisms. For that, in vivo exposure to DES (0.75µM) during 15 days, in vitro and ex vivo exposure of outer mantle epithelium (OME) cells to DES (0.75µM), were performed followed by study of short-circuit current (Isc), transepithelial potential (Vt) and transepithelial conductance (Gt) as well as identification of membrane transport systems and intracellular pH (pHi). Our results show that in vivo exposure to DES decreases in 30% the OME Isc and ex vivo addition of DES to the basolateral side of OME also induced Isc decrease. Several membrane transporters such as V-type ATPases, Na(+)/H(+) exchangers, Na(+)-K(+) pump, Na(+)-driven and Na(+)-independent HCO3(-)/Cl(-) transporters and Na(+)/HCO3(-) co-transporter were identified as responsible for pHi maintenance in OME and noteworthy, DES caused a pHi decrease in OME cells similar to the effect observed when OME cells were exposed to 4,4'-diisothiocyanostilbene disulfonic acid (DIDS), an inhibitor of several bicarbonate membrane transporters. The addition of DIDS after OME cells exposure to DES did not cause any alteration. We concluded that DES is able to modulate membrane ion transport and pHi in the OME of A. cygnea and that this effect seems to be due to inhibition of HCO3(-)/Cl(-) co-transporters present on the basolateral membrane.


Assuntos
Anodonta/efeitos dos fármacos , Dietilestilbestrol/toxicidade , Epitélio/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA