RESUMO
The onset of complex diseases at a later stage of life has been linked with maternal folic acid (FA) ingestion. However, little is known regarding the underlying molecular fingerprints of the offspring. We integrated proteomics-metabolomics profiles and analyzed the influence of maternal FA supplementation on the metabolism of adult offspring rats. Twenty pregnant female rats were randomly assigned to a FA supplementation (FolS group, 10 mg/kg FA) or control group (2 mg/kg FA respectively). Such an omics approach revealed that the dopaminergic synapse pathway, tricarboxylic acid cycle and neural development-related metabolites such as glutamic acid and γ-aminobutyric acid were significantly up-regulated in the FolS group, whereas pyruvic acid, oxalic acid and adipic acid were reduced. Maternal FA supplementation can cause alterations of metabolites and protein in the offspring rats.
Assuntos
Suplementos Nutricionais , Proteômica , Gravidez , Animais , Ratos , Feminino , Ácido Fólico/farmacologia , MetabolômicaRESUMO
Objective: Maternal folic acid supplementation has been recommended prior to and during the first trimester of pregnancy to reduce the risk of infant neural tube defects. However, an uncertain relationship between folic acid supplementation during pregnancy and development of childhood asthma exists. Recent data show a methyl donor-rich diet could increase the risk of developing allergic airway disease through DNA methylation and aberrant gene transcription. This study evaluated the effect of folic acid supplementation during pregnancy on airway remodeling and allergic airway disease vulnerability in a mouse asthma model. Methods: BALB/c mice were divided into four groups according to gestational folic acid supplementation and postnatal ovalbumin (OVA) exposure: Group 1 (whole pregnancy folic acid supplementation + OVA-exposed group), Group 2 (first gestational week folic acid supplementation + OVA-exposed group), Group 3 (no folic acid supplementation + OVA-exposed group), and Group 4 (control group). Offspring were sacrificed on day 45 for immunohistological and ultrastructural tests. Results: In OVA challenged groups, folic acid supplementation led to a thicker epithelial and subepithelial smooth muscle layer than in the unsupplemented group. Moreover, folic acid supplementation during whole pregnancy (Group 1) was associated with a thicker epithelial and subepithelial smooth muscle layer than folic acid supplementation during the first week of pregnancy (Group 2), suggesting a duration-response relationship. Electron microscopic imaging revealed that structural changes including the loss of epithelial integrity, thickening of basement membrane, and subepithelial fibrosis were more prominent in the folic acid supplementation groups. Conclusions: This study suggested that maternal folic acid supplementation during pregnancy affects airway remodeling and increases the allergic responses induced by ovalbumin challenge in offspring. In addition, the effect size increased as the duration and cumulative dose increased.