Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Clin Med ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274235

RESUMO

Objectives: As the COVID-19 pandemic wanes, understanding maternal-fetal antibody transfer remains crucial for optimizing vaccination strategies. This study evaluates anti-SARS-CoV-2 antibody levels in amniotic fluid following maternal BNT162b2 mRNA vaccination and/or COVID-19 infection during early pregnancy, focusing on the first and second trimesters. Methods: A retrospective cohort study was conducted at a tertiary university-affiliated hospital, involving 149 pregnant women who underwent amniocentesis. Anti-SARS-CoV-2 spike IgG levels were measured in amniotic fluid samples. Participants were categorized based on vaccination and infection status: vaccine-only, infection-only, vaccine + infection, and no vaccine/infection. Correlations between antibody levels and the time since vaccination or infection were analyzed. Results: The vaccine + infection group had a higher proportion of positive antibody levels compared to the vaccine-only group (63.6% vs. 35.9%, p = 0.029). Median SARS-CoV-2 IgG levels were significantly higher in the vaccine + infection group (283.0 AU/mL) than in the vaccine-only group (64.1 AU/mL, p = 0.006). Women who received three vaccine doses had higher antibody levels and more positive antibody rates compared to those with one or two doses. A significant negative correlation was found between antibody levels and the interval since the last vaccine dose or infection. Conclusions: Our results indicate the presence of anti-SARS-CoV-2 antibodies in the amniotic fluid, reflecting antibody transfer during early pregnancy. However, a noticeable decrease in immunity was observed, as indicated by declining amniotic fluid antibody levels over time. Further studies are needed to determine the optimal timing and number of boosters required to protect against new variants of SARS-CoV-2.

2.
Microbiol Spectr ; 12(8): e0087024, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916319

RESUMO

Since Porcine Circovirus 3 (PCV3) was first identified in 2016, our understanding of the humoral response is still relatively scarce. Current knowledge of the PCV3 humoral response is primarily based on field studies identifying the seroprevalence of PCV3 Cap-induced antibodies. Studies on the humoral response following experimental PCV3 infection have conflicting results where one study reports the development of the Cap IgG response 7 days postinfection with no concurrent Cap IgM response, while a second study shows a Cap IgM response at the same time point with no detection of Cap IgG. The dynamics of the PCV3 Cap and Rep IgG following maternal antibody transfer and experimental infection have not been well characterized. Additionally, the cross-reactivity of convalescent serum from PCV2 and PCV3 experimentally infected animals to serologic methods of the alternate PCV has limited evaluation. Here, we show that maternally derived antibodies were detectable in piglet serum 7-9 weeks postfarrowing for the Cap IgG and 5-weeks-post farrowing for the Rep IgG using Cap- and Rep-specific enzyme linked immunosorbent assays (ELISA) and immunofluorescent assays (IFA) methods. Following experimental inoculation, Cap IgG was detected at 2-weeks-post inoculation and Rep IgG detection was delayed until 4-weeks-post inoculation. Furthermore, convalescent serum from either PCV2 or PCV3 methods displayed no cross-reactivity by serological methods against the other PCV. The information gained in this study highlights the development of both the Cap- and Rep-specific antibodies following experimental infection and through the transfer of maternal antibodies. The increased understanding of the dynamics of maternal antibody transfer and development of the humoral response following infection gained in the present study may aid in the establishment of husbandry practices and potential application of prophylactics to control PCV3 clinical disease. IMPORTANCE: Research on Porcine Circovirus 3 (PCV3) immunology is vital for understanding and controlling this virus. Previous studies primarily relied on field observations, but they have shown conflicting results about the immunological response against PCV3. This study helps fill those gaps by looking at how antibodies develop in pigs, especially those maternal-derived, and their impact in neonatal pigs preventing PCV3-associated disease in piglets. In addition, we look at the dynamics of antibodies in experimental infections mimicking infection in pigs in the grower-phase condition. Understanding this process can help to develop better strategies to prevent PCV3 infection. Also, this research found that PCV2 and PCV3 do not cross-react, which is crucial for serological test development and results interpretation. Overall, this work is essential for improving swine health and farming practices in the face of PCV3 infections.


Assuntos
Anticorpos Antivirais , Infecções por Circoviridae , Circovirus , Imunidade Humoral , Imunidade Materno-Adquirida , Imunoglobulina G , Doenças dos Suínos , Animais , Circovirus/imunologia , Suínos , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Ensaio de Imunoadsorção Enzimática , Reações Cruzadas/imunologia
3.
Emerg Infect Dis ; 30(6): 1267-1270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782366

RESUMO

We assessed SARS-CoV-2 seroprevalence in Japan during July-August 2023, with a focus on 2 key age groups, 0-15 and >80 years. We estimated overall seroprevalence of 45.3% for nucleocapsid antibodies and 95.4% for spike antibodies and found notable maternally derived spike antibodies in infants 6-11 months of age (90.0%).


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/imunologia , Estudos Soroepidemiológicos , Japão/epidemiologia , SARS-CoV-2/imunologia , Lactente , Criança , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pré-Escolar , Adulto , Adolescente , Adulto Jovem , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Idoso de 80 Anos ou mais , Recém-Nascido , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Front Immunol ; 15: 1305587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487530

RESUMO

Maternal immunoglobulin transfer plays a key role in conferring passive immunity to neonates. Maternal blood immunoglobulin Y (IgY) in avian species is transported to newly-hatched chicks in two steps: 1) IgY is transported from the maternal circulation to the yolk of maturing oocytes, 2) the IgY deposited in yolk is transported to the circulation of the embryo via the yolk sac membrane. An IgY-Fc receptor, FcRY, is involved in the second step, but the mechanism of the first step is still unclear. We determined whether FcRY was also the basis for maternal blood IgY transfer to the yolk in the first step during egg development. Immunohistochemistry revealed that FcRY was expressed in the capillary endothelial cells in the internal theca layer of the ovarian follicle. Substitution of the amino acid residue in Fc region of IgY substantially changed the transport efficiency of IgY into egg yolks when intravenously-injected into laying quail; the G365A mutant had a high transport efficiency, but the Y363A mutant lacked transport ability. Binding analyses of IgY mutants to FcRY indicated that the mutant with a high transport efficiency (G365A) had a strong binding activity to FcRY; the mutants with a low transport efficiency (G365D, N408A) had a weak binding activity to FcRY. One exception, the Y363A mutant had a remarkably strong binding affinity to FcRY, with a small dissociation rate. The injection of neutralizing FcRY antibodies in laying quail markedly reduced IgY uptake into egg yolks. The neutralization also showed that FcRY was engaged in prolongation of half-life of IgY in the blood; FcRY is therefore a multifunctional receptor that controls avian immunity. The pattern of the transport of the IgY mutants from the maternal blood to the egg yolk was found to be identical to that from the fertilized egg yolk to the newly-hatched chick blood circulation, via the yolk sac membrane. FcRY is therefore a critical IgY receptor that regulates the IgY uptake from the maternal blood circulation into the yolk of avian species, further indicating that the two steps of maternal-newly-hatched IgY transfer are controlled by a single receptor.


Assuntos
Galinhas , Células Endoteliais , Imunoglobulinas , Animais , Feminino , Humanos , Recém-Nascido , Células Endoteliais/metabolismo , Receptores Fc , Anticorpos/metabolismo
5.
BMC Pregnancy Childbirth ; 24(1): 171, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424487

RESUMO

BACKGROUND: The concerted regulation of placenta microbiota and the immune responses secures the occurrence and development of pregnancy, while few studies reported this correlation. This study aimed to explore the relationship between the placenta microbiota and immune regulation during pregnancy. METHODS: Twenty-six healthy pregnant women scheduled for elective cesarean section in the First Affiliated Hospital of Jinan University who met the inclusion criteria were recruited. Placenta and peripheral venous blood samples were collected. Microbiota in placental tissue was detected using high-throughput sequencing. Flow cytometry was used to detect immune cells in placental tissue and peripheral venous blood. ELISA and Luminex liquid chip technology were used to detect the content of cytokines in placental tissue and peripheral venous blood, respectively. RESULTS: The placental microbiota has stimulating effects on the local immunity of the placenta and mainly stimulates the placental balance ratio CD56 + CD16 + /CD56 + CD16 and the placental macrophages, that is, it plays the role of immune protection and supporting nutrition. The stimulating effect of placental microbiota on maternal systemic immunity mainly induces peripheral Treg cells and B lymphocytes. CONCLUSION: The placental microbiota may be an important factor mediating local immune regulation in the placenta, and placental microbiota participates in the regulatory function of the maternal immune system.


Assuntos
Microbiota , Placenta , Gravidez , Feminino , Humanos , Gestantes , Cesárea , Citocinas
6.
Cell Immunol ; 395-396: 104796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38104514

RESUMO

Newborns, whether born prematurely or at term, have a fully formed but naive immune system that must adapt to the extra-uterine environment to prevent infections. Maternal immunity, transmitted through the placenta and breast milk, protects newborns against infections, primarily via immunoglobulins (IgG and IgA) and certain maternal immune cells also known as microchimeric cells. Recently, it also appeared that the maternal gut microbiota played a vital role in neonatal immune maturation via microbial compounds impacting immune development and the establishment of immune tolerance. In this context, maternal vaccination is a powerful tool to enhance even more maternal and neonatal health. It involves the transfer of vaccine-induced antibodies to protect both mother and child from infectious diseases. In this work we review the state of the art on maternal immune factors involved in the prevention of neonatal bacterial infections, with particular emphasis on the role of maternal vaccination in protecting neonates against bacterial disease.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Gravidez , Feminino , Criança , Recém-Nascido , Humanos , Leite Humano , Fatores Imunológicos , Infecções Bacterianas/prevenção & controle , Anticorpos Antivirais
7.
Front Vet Sci ; 10: 1162477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026657

RESUMO

The role of water buffaloes in foot-and-mouth disease (FMD) epidemiology as one of the major hosts of the virus that can develop persistent asymptomatic infection highlights the importance of sustaining surveillance on the antibody response elicited by vaccination in these animals. There is gap in the knowledge on how serological assays that measure antibodies against capsid proteins perform with buffalo samples and which would be the most reliable test to substitute the virus neutralization test (VNT) a cumbersome and low-throughput tool for field surveillance. Alternatively, the liquid-phase blocking sandwich ELISA (LPBE) is commonly used. Previous data from our laboratory demonstrated that the vaccine-induced antibodies assessed by the LPBE yielded low specificity with buffaloes' samples. In contrast, a single-dilution avidity ELISA (AE) aimed to detect high-avidity antibodies against exposed epitopes, combined with an indirect ELISA (IE) to assess IgG levels, produced more reliable results. Here we analyzed for the first time the kinetics of the antibodies induced by vaccination in two different buffalo herds (n = 91) over 120 days using AE, IE, LPBE, and the VNT. Kinetics were similar in the different assays, with an increase of antibodies between 0- and 14-days post-vaccination (dpv) which were maintained thereafter. VNT and AE results were concordant (Kappa value = 0.76), and both assays revealed a decay in the antibody response in calves with maternal antibodies at 90 and 120 dpv, which was not evidenced by the LPBE. These results show that kinetics of antibody responses to FMD vaccination are similar in buffalo and cattle, and support the use of indirect ELISA assays, in particular Avidity ELISA, as alternatives to the VNT for vaccine-immunity monitoring irrespectively of the animal's passive or active immune status.

8.
Vet World ; 16(8): 1690-1694, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37766699

RESUMO

Background and Aim: African horse sickness (AHS) has become a newly emerging disease after an outbreak in northeastern Thailand in March 2020. Mass vaccination in horses with live-attenuated AHS virus (AHSV) vaccine is essential for AHS control and prevention. This study aimed to monitor the longitudinal humoral immune response before and after a single vaccination using a live-attenuated vaccine against AHS in stallions, mares, and pregnant mares, including maternal immunity in foals born from pregnant mares during the outbreak in Thailand. Materials and Methods: A total of 13 stallions and 23 non-pregnant and 21 pregnant mares were vaccinated with live-attenuated AHSV vaccines. Serum samples from selected horses were collected on the day of vaccination and 1, 6, 8, 9, 10, and 12-months post-vaccination. Furthermore, seven serum samples of foals born from vaccinated pregnant mares were collected on parturition date and 1, 3, and 6-months old. The antibody titer against AHS in all collected serum samples was evaluated using a commercial enzyme-linked immunosorbent assay kit. All data were analyzed for mean and standard deviation for each group of samples using a spreadsheet program. Antibody titers between times were analyzed using a one-way analysis of variance as repeated measurement, and antibody titers between horse groups were analyzed using a general linear model for statistically significant differences when p < 0.05. Results: In stallion and non-pregnant mare groups, there were no statistically significant differences in antibody titers in all 6 time periods after vaccination. The antibody titer in the pregnant mare group showed a non-statistically significant difference between each gestation stage, except at 8 months post-vaccination. Furthermore, increasing antibody titers on days 1 and 3 after receiving colostrum in foals indicate the major role of transcolostral antibody transfer for AHS. Conclusion: This study demonstrated that a single AHS vaccination using a live-attenuated vaccine could stimulate high antibody titers sufficient for AHS control and prevention during the outbreak in Thailand. Similarly, the antibody response of vaccinated horses of both genders, including various stages of pregnant mares, was statistically not different.

9.
Immun Inflamm Dis ; 11(9): e1001, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773698

RESUMO

BACKGROUND: Ascaridia galli is the largest gut-dwelling helminth of chickens, which confers adverse effects on meat and egg production; thus, on the animal protein supply and the economy. Both adult and immature parasites affect gut health, but larval stages play a major role in pathology. AIMS: Here, we present immunology and pathology of A. galli in chickens. MATERIALS AND METHODS: Literatures were surveyed through online platforms such as PubMed, Google Scholar and Researchgate. RESULTS: The larvae cause excessive mucus production, damage to the intestinal gland, hemorrhage, anemia, diarrhea, and malnutrition. The adult worms can cause death by intestinal obstruction and intussusception. Although both cellular and humoral immunity are involved in fighting against ascariasis, the role of naturally acquired immunity is poorly defined. In cellular immunity, Th-2 cytokines (IL-4, IL-5, IL-9, and IL-13), goblet cells (mucin), gut-associated lymphoid tissues, CD8α+ intraepithelial cells, TCRγδ + T cells, and TGF-ß4 form a protective band. Type 2 immunity provides protection by forming a network of endogenous damage-associated molecular patterns, chitin, and parasitic antigens. Among antibodies, IgY is the most prominent in chickens and provides temporary humoral protection. During parasitic infection, infiltration of various immune cells is evident, especially in the intestinal epithelium, lamina propria, and crypts of the duodenum and jejunum. In chickens older than 12 weeks, gradual reduction of worm burden is more successful than the younger birds. Female chickens exert a short-lived but higher level of protection by passing IgY to chicks in the form of egg yolk antibodies. In laying conditions, immunity differs between breeds. This review provides an overview of the silent but inevitable pathological changes induced by A. galli and the interaction of host immunity with the parasite.


Assuntos
Ascaridia , Ascaridíase , Animais , Feminino , Ascaridíase/veterinária , Ascaridíase/parasitologia , Galinhas/parasitologia , Citocinas , Mucosa Intestinal , Anticorpos
10.
Vaccines (Basel) ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37766175

RESUMO

Many highly effective vaccines have been developed to protect dogs against disease caused by canine parvovirus, but despite this vaccine interference by maternally derived antibodies continues to cause immunisation failure. To help overcome this limitation we have developed a novel, recombinant canine parvovirus type 2c vaccine strain, based on the structural and non-structural elements of an established type 2 vaccine. This novel CPV-2c vaccine strain has unique efficacy in the field, it is able to induce sterilising immunity in naïve animals 3 days after vaccination and is able to overcome very high levels of maternally derived antibodies from 4 weeks of age-thus closing the immunity gap to canine parvovirus infection in young puppies. The vaccine strain, named 630a, has been combined with an established canine distemper virus Onderstepoort vaccine strain to produce a new bivalent vaccine (Nobivac DP PLUS), intended to immunise very young puppies in the face of high levels of maternally derived antibody. Here, we describe the onset of immunity and maternal antibody interference studies that support the unique efficacy of the strain, and present overdose studies in both dogs and cats that demonstrate the vaccine to be safe.

11.
Front Immunol ; 14: 1216410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753075

RESUMO

Introduction: As the SARS-CoV-2 pandemic continues to evolve, we face new variants of concern with a concurrent decline in vaccine booster uptake. We aimed to evaluate the difference in immunity gained from the original SARS-CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during pregnancy against recent variants of concern. Study Design: This is a retrospective analysis of previously collected samples from 192 patients who delivered between February 2021 and August 2021. Participants were categorized as 1) COVID vaccine: mRNA vaccine in pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was neutralizing capacity against wild-type, Delta, and Omicron-B1 between cohorts. Secondary outcomes include a comparison of cord-blood ID50 as well as the efficiency of vertical transfer, measured by cord-blood:maternal blood ID50 for each variant. Results: Pregnant women with COVID-19 vaccination had a greater spike in IgG titers compared to both those with COVID-19 disease exposure and controls. Both COVID exposure and vaccination resulted in immunity against Delta, but only COVID vaccination resulted in significantly greater Omicron ID-50 versus controls. The neutralizing capacity of serum from newborns was lower than that of their mothers, with COVID-vaccination demonstrating higher cord-blood ID50 vs wildtype and Delta variants compared to control or COVID-exposed, but neither COVID-exposure nor vaccination demonstrated significantly higher Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood ID50 with COVID vaccination compared to COVID-19 exposure for wild-type and Delta respectively. In pair-wise comparison, vertical transfer of neutralization capacity (cord-blood:maternal blood ID50) was greatest for wild-type and progressively reduced for Delta and Omicron ID50. Conclusion: Pregnant patients with either an initial mRNA vaccination series or COVID-exposure demonstrated reduced immunity against newer variants compared to wild-type as has been reported for non-pregnant individuals; however, the COVID-vaccination series afforded greater cross-variant immunity to pregnant women, specifically against Omicron, than COVID-disease. Vertical transfer of immunity is greater in those with COVID vaccination vs COVID disease exposure but is reduced with progressive variants. Our results reinforce the importance of bivalent booster vaccination in pregnancy for both maternal and infant protection and also provide a rationale for receiving updated vaccines as they become available.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Recém-Nascido , Gravidez , Lactente , Humanos , Feminino , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Retrospectivos , Vacinação , Mães , Complicações Infecciosas na Gravidez/prevenção & controle
12.
J Vet Intern Med ; 37(5): 1889-1892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37515307

RESUMO

BACKGROUND: Equine granulocytic anaplasmosis (EGA) is a common disease in adult horses, but clinical disease in foals is rarely reported. The relationship between equine maternal and neonatal antibodies to Anaplasma phagocytophilum is unclear. HYPOTHESIS/OBJECTIVES: That mares in an endemic region would be seropositive for A. phagocytophilum and that mare and foal serum IgG concentrations for A. phagocytophilum would correlate. Additionally, we hypothesized that foal IgG concentrations for A. phagocytophilum acquired by passive immunity would decline by 6 months of age. ANIMALS: Twenty-two healthy mare-foal pairs. METHODS: This prospective observational study investigated serum IgG concentrations specific for A. phagocytophilum in mares and foals using an immunofluorescent antibody test (IFA). The association between foal titer (as a binary variable) and age in months was assessed using a mixed-effects logistic regression. RESULTS: A positive correlation between newborn foal antibody titers and mare titers was identified at both the pre-foaling (τa = 0.38, τb = 0.50, P = .009) and foaling timepoints (τa = 0.36, τb = 0.47, P = .01). In A. phagocytophilum seropositive neonates, it was unlikely that a positive titer would be detected by 3 months of age (OR = 0.002, P = .02, 95% CI: 0.00001-0.38). Three out of 20 foals seroconverted between 3 and 6 months of age. CONCLUSIONS AND CLINICAL IMPORTANCE: Transfer of specific passive immunity to A. phagocytophilum occurred in 80% of foals born to seropositive mares and declined by 3 months of age. A. phagocytophilum infection should be considered in foals displaying clinical signs consistent with EGA.


Assuntos
Anaplasma phagocytophilum , Doenças dos Cavalos , Animais , Cavalos , Feminino , Maryland , Pennsylvania , Imunidade Materno-Adquirida , Imunoglobulina G , Animais Recém-Nascidos
13.
Immunol Allergy Clin North Am ; 43(1S): e1-e20, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37179052

RESUMO

This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.

14.
Fish Shellfish Immunol ; 137: 108749, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062435

RESUMO

Infectious hematopoietic necrosis (IHN) is a significant viral disease affecting salmonids, whereas Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD), remains one of the most significant bacterial pathogens of salmonids. We explored maternal immunity in the context of IHN and BCWD management in rainbow trout (Oncorhynchus mykiss) aquaculture. Two experimental trials were conducted where different groups of female broodstock were immunized prior to spawning with an IHNV DNA vaccine or a live attenuated F. psychrophilum (Fp B.17-ILM) vaccine alone, or in combination. Progeny were challenged with either a low or high dose of IHNV at 13 days post hatch (dph) and 32 dph or challenged with F. psychrophilum at 13 dph. Mortality following a low-dose IHNV challenge at 13 dph was significantly lower in progeny from vaccinated broodstock vs. unvaccinated broodstock, but no significant differences were observed at 32 dph. Mortality due to BCWD was also significantly reduced in 13 dph fry that originated from broodstock immunized with the Fp B.17-ILM vaccine. After vaccination broodstock developed specific or neutralizing antibodies respectively to F. psychrophilum and IHNV; however, antibody titers in eggs and fry were undetectable. In the eggs and fry mRNA transcripts of the complement components C3 and C5 were detected at much higher levels in progeny from vaccinated broodstock and showed a significantly increased and rapid response post-challenge compared with unvaccinated broodstock. After challenges pro-inflammatory cytokine expression was immediately and considerably elevated in the fry from vaccinated broodstock vs. unvaccinated broodstock, whereas adaptive immune genes were elevated to a lesser degree. Results suggest that maternal transfer of innate and adaptive factors at the transcript level occurred because development of lymphomyeloid organs is not complete in such young fry. In addition to documenting maternally derived immunity in teleosts, this study demonstrates that broodstock vaccination can confer some degree of protection to progeny against viral and bacterial pathogens.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Vacinas de DNA , Feminino , Animais , Infecções por Flavobacteriaceae/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Vacinação/veterinária
15.
Vaccines (Basel) ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992230

RESUMO

While it is well appreciated that maternal immunity can provide neonatal protection, the contribution of maternal vaccination toward generating such immunity is not well characterized. In our previous work, we created a candidate influenza vaccine using our chimeric hemagglutinin (HA) construct, HA-129. The HA-129 was expressed as part of a whole-virus vaccine that was built on the A/swine/Texas/4199-2/98-H3N2 backbone to generate the recombinant virus TX98-129. The TX98-129 candidate vaccine has the ability to induce broadly protective immune responses against genetically diversified influenza viruses in both mice and nursery pigs. In the current study, we established a pregnant sow-neonate model to evaluate the maternal immunity induced by this candidate vaccine to protect pregnant sows and their neonatal piglets against influenza virus infection. In pregnant sows, the results consistently show that TX98-129 induced a robust immune response against the TX98-129 virus and the parental viruses that were used to construct HA-129. After challenge with a field strain of influenza A virus, a significant increase in antibody titers was observed in vaccinated sows at both 5 and 22 days post challenge (dpc). The challenge virus was detected at a low level in the nasal swab of only one vaccinated sow at 5 dpc. Evaluation of cytokine responses in blood and lung tissue showed that levels of IFN-α and IL-1ß were increased in the lung of vaccinated sows at 5 dpc, when compared to unvaccinated pigs. Further analysis of the T-cell subpopulation in PBMCs showed a higher ratio of IFN-γ-secreting CD4+CD8+ and CD8+ cytotoxic T cells in vaccinated sows at 22 dpc after stimulation with either challenge virus or vaccine virus. Finally, we used a neonatal challenge model to demonstrate that vaccine-induced maternal immunity can be passively transferred to newborn piglets. This was observed in the form of both increased antibody titers and deceased viral loads in neonates born from immunized sows. In summary, this study provides a swine model system to evaluate the impact of vaccination on maternal immunity and fetal/neonatal development.

17.
Int Breastfeed J ; 18(1): 3, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627706

RESUMO

BACKGROUND: Our main objective was to determine the evolution of IgG and IgA antibodies directed against SARS-CoV-2 protein S in the blood of lactating women and in breast milk. METHODS: A cohort of 110 uninfected and vaccinated breastfeeding women was followed-up for 6 months at the Marqués de Valdecilla University Hospital, Spain, in 2020. An additional group of 23 breastfeeding mothers who had no previously documented infection and had not been vaccinated against SARS-CoV-2 were included as a control group. The antibodies in blood and breast milk and their evolution at 6 months post-vaccination were analysed. RESULTS: One hundred ten breastfeeding mothers were included; 70 women (63.6%) were vaccinated with two doses of BNT162b2, 20 women (18.2%) received two doses of mRNA-1273, and 20 women (18.2%) received a single dose of ChAdOx1-S. No evidence of differences between concentrations of antibodies was found according to the type of vaccine, with the exception of serum IgA antibodies, which was higher in women vaccinated with mRNA-1273: mean [95%CI]: 0.05 AU/mL [0.03,0.06] with mRNA-1273, 0.02 AU/mL [0.01,0.03] with BNT162b2 and 0.01 AU/mL [0.00,0.03] with ChAdOx1-S, ANOVA p value = 0.03. The lack of difference between vaccines was also found when anti-S1 specific IgG in serum and breast milk were measured. CONCLUSIONS: In lactating women vaccinated against COVID-19, anti-SARS-CoV-2 antibodies can be detected in both serum and breastmilk 6 months after receiving the second dose, although their concentrations decreased when compared with concentrations reached immediately after vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Humanos , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Lactação , COVID-19/prevenção & controle , Aleitamento Materno , SARS-CoV-2 , Leite Humano , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina A
18.
Vaccines (Basel) ; 11(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679988

RESUMO

The passive protection afforded by the colostrum from cattle that were vaccinated prepartum with an inactivated combination vaccine against the bovine respiratory syncytial virus (BRSV) was evaluated after an experimental challenge of calves. Pregnant cows without or with a low ELISA and neutralizing BRSV antibody titers were twice vaccinated or not vaccinated, the last immunization being at one month prior to calving. Vaccination was followed by a rapid increase in BRSV antibody titers after the second immunization. Twenty-eightnewborn calves were fed during the 6 h following birth, with 4 L of colostrum sourced from vaccinated cows (14 vaccine calves) or non-vaccinated cows (14 control calves) and were challenged with BRSV at 21 days of age. We showed that maternal immunity to BRSV provides a significant reduction in the clinical signs of BRSV in calves, especially for severe clinical forms. This protection was correlated with reduced BRSV detection in the lower respiratory tract but not in nasal swabs, indicating an absence of protection against BRSV nasal excretion. Finally, transcriptomic assays in bronchoalveolar lavages showed no statistical differences between groups for chemokine and cytokine mRNA transcriptions, with the exception of the overexpression of IL-9 at days 6 and 10 post-challenge, and a severe downregulation of CXCL-1 at day 3 post-challenge, in the vaccine group.

20.
Anim Sci J ; 93(1): e13793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36502271

RESUMO

Immunoglobulin A (IgA) in saliva, mostly consisting of secretory IgA, plays an important role in the mucosal immune mechanism. This study evaluated changes in salivary IgA and Immunoglobulin G (IgG) concentrations in Japanese Black cows (n = 16) during calving. Individual saliva samples were collected -2, 0, and 2 weeks postpartum. Immunoglobulin concentrations differed significantly among weeks (P < 0.05), but the effect of parity and week × parity was insignificant. Salivary IgA concentrations decreased drastically (P < 0.05) after calving compared with those at -2 weeks postpartum and remained low until 2 weeks postpartum. The salivary IgG concentrations decreased gradually during peripartum and differed at -2 and 2 weeks postpartum (P < 0.05). Considering the immunoglobulin concentrations at -2 weeks postpartum as the reference standard for 100%, the rates of decrease in IgA concentrations (36.7 ± 6.9%) were significantly lower (P < 0.05) than those of IgG (70.3 ± 10.1%) at calving day. To our knowledge, this is the first report indicating that salivary IgA concentrations decreased drastically after calving in Japanese Black cows. Further studies monitoring the secretory functions of IgA in the salivary gland are essential for understanding maternal immunity in cattle.


Assuntos
Imunoglobulina A , Imunoglobulina G , Gravidez , Bovinos , Animais , Feminino , Projetos Piloto , Saliva , Imunoglobulina A Secretora , Período Pós-Parto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA