RESUMO
We studied the RbV3Sb5 kagome compound's structural, mechanical, thermal, and optoelectronic properties. Mulliken and Hirshfeld population analysis found ionic and covalent connections in RbV3Sb5. The Born stability criterion shows that pure RbV3Sb5 is mechanically stable. The precise measurement of 3.96 indicates that our sample has higher machinability at 20â GPa. Low anticipated hardness of RbV3Sb5 suggests it can be used as a soft solid lubricant. Hardness ratings rise with pressure, however there are exceptions. Pressure causes large nonmonotonic changes in RbV3Sb5's anisotropic characteristics. A comparable 20â GPa Zener anisotropic value, RbV3Sb5 has the highest. The structure's projected Debye temperature at 0â GPa is 284.39â K, indicating softness. Dispersion curves with negative frequencies suggest ground state structural dynamical instability. The structure has no negative-energy phonon branches under 10â GPa stress. From band structure and density of state analysis, the structure behaves metallically under hydrostatic pressure. Also, the structure has maximal ultra-violet conductivity and absorption. The absorption coefficient, conductivity, and loss function plots show uniform patterns at all pressures. As pressure rises, these graphs' peaks blue shift.
RESUMO
Silicone rubber (SR), as one kind of highly valuable rubber material, has been widely used in many fields, e.g., construction, transportation, the electronics industry, automobiles, aviation, and biology, owing to its attractive properties, including high- and low-temperature resistance, weathering resistance, chemical stability, and electrical isolation, as well as transparency. Unfortunately, the inherent flammability of SR largely restricts its practical application in many fields that have high standard requirements for flame retardancy. Throughout the last decade, a series of flame-retardant strategies have been adopted which enhance the flame retardancy of SR and even enhance its other key properties, such as mechanical properties and thermal stability. This comprehensive review systematically reviewed the recent research advances in flame-retarded SR materials and summarized and introduced the up-to-date design of different types of flame retardants and their effects on flame-retardant properties and other performances of SR. In addition, the related flame-retardant mechanisms of the as-prepared flame-retardant SR materials are analyzed and presented. Moreover, key challenges associated with these various types of FRs are discussed, and future development directions are also proposed.
RESUMO
Morphological transformations in emulsions of cellulose and polyacrylonitrile (PAN) ternary copolymers containing acrylonitrile, methyl acrylate, and methylsulfonate comonomers in N-methylmorpholine-N-oxide were studied over the entire range of concentrations depending on temperature and intensity of the deformation action. Based on the morphological and rheological features of the system, the temperature-concentration range of spinnability of mixed solutions was determined, and composite fibers were spun. The fibers are characterized by a heterogeneous fibrillar texture. Studies of the structure of the fibers, carried out using X-ray diffraction analysis, revealed a decrease in cellulose crystallinity with an increase in the content of PAN. The study of the thermal properties of the obtained fibers, carried out using DSC, and chemical transformations in them in a wide temperature range by high-temperature diffuse reflection IR spectroscopy made it possible to reveal a new intense exothermic peak on the thermograms at 360 °C, which according to the IR spectra corresponds to the transformation of intermacromolecular physical interactions of the PAN and cellulose into covalent bonds between polymers. In addition, the ester groups found during the thermal treatment of the PAN part of the composite fibers in the pyrolysis zone can have a key effect on the process of their further carbonization.
RESUMO
Pultrusion is a high-volume manufacturing process for Fibre-Reinforced Polymer (FRP) composites. It requires careful tuning and optimisation of process parameters to obtain the maximum production rate. The present work focuses on the correlation between the set die temperatures of 80 °C, 100 °C, 120 °C, and 140 °C and the resin cure state at constant pull speeds. Lab-scale oven trials were conducted to understand the thermal behaviour of the resin system and to provide a temperature range for the pultrusion trials. Dielectric Analysis (DEA) was used during pultrusion trials to monitor the effect of die temperature on the cure progression. The DEA results showed that, by increasing die temperature, the exothermic peak shifts closer towards the die entry. Moreover, the degree of cure for samples processed at 140 °C was 97.7%, in comparison to 86.2% for those cured at 100 °C. The rate of conversion and the degree of cure correspond directly to the set die temperatures of the pultrusion trials, contributing to understanding the effect of die temperature on cure progression. Mechanical and thermal material properties were measured. Samples cured at 120 °C showed the highest mechanical performance, exceeding those cured at 140 °C, linked to the generation of higher internal stress due to the higher rate of conversion. This work can be used as a guide for pultruded composite sections, to understand the cure behaviour of resin systems under various applied temperatures and the impact of the die temperature conditions on thermal and mechanical properties.
RESUMO
Segmented thermoplastic polyurethanes (PU) were synthetized using a polycarbonatediol macrodiol as a flexible or soft segment with a molar mass of 2000 g/mol, and different diisocyanate molecules and 1,4-butanediol as a rigid or hard segment. The diisocyanate molecules employed are 3,3'-Dimethyl-4,4'-biphenyl diisocyanate (TODI), 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-Methylenebis(phenyl isocyanate) 1-isocyanato-4-[(4-phenylisocyanate)methyl]benzene and 1-isocyanate-4-[(2-phenylisocyanate) methyl]benzene (ratio 1:1) (MDIi), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties. Different techniques, such as DSC, DMA, and FTIR, have been used to determine flexible-rigid segment phase behavior. Mechanical properties, such as tensile properties, Shore D hardness, and "compression set", have been determined. This work reveals that the structure of the hard segment is crucial to determine the degree of phase miscibility which affects the resulting mechanical properties, such as tensile properties, hardness, and "compression set".
RESUMO
The NASA InSight Lander on Mars includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow of the planet. The package uses temperature sensors that would have been brought to the target depth of 3-5 m by a small penetrator, nicknamed the mole. The mole requiring friction on its hull to balance remaining recoil from its hammer mechanism did not penetrate to the targeted depth. Instead, by precessing about a point midway along its hull, it carved a 7 cm deep and 5-6 cm wide pit and reached a depth of initially 31 cm. The root cause of the failure - as was determined through an extensive, almost two years long campaign - was a lack of friction in an unexpectedly thick cohesive duricrust. During the campaign - described in detail in this paper - the mole penetrated further aided by friction applied using the scoop at the end of the robotic Instrument Deployment Arm and by direct support by the latter. The mole tip finally reached a depth of about 37 cm, bringing the mole back-end 1-2 cm below the surface. It reversed its downward motion twice during attempts to provide friction through pressure on the regolith instead of directly with the scoop to the mole hull. The penetration record of the mole was used to infer mechanical soil parameters such as the penetration resistance of the duricrust of 0.3-0.7 MPa and a penetration resistance of a deeper layer ( > 30 cm depth) of 4.9 ± 0.4 MPa . Using the mole's thermal sensors, thermal conductivity and diffusivity were measured. Applying cone penetration theory, the resistance of the duricrust was used to estimate a cohesion of the latter of 2-15 kPa depending on the internal friction angle of the duricrust. Pushing the scoop with its blade into the surface and chopping off a piece of duricrust provided another estimate of the cohesion of 5.8 kPa. The hammerings of the mole were recorded by the seismometer SEIS and the signals were used to derive P-wave and S-wave velocities representative of the topmost tens of cm of the regolith. Together with the density provided by a thermal conductivity and diffusivity measurement using the mole's thermal sensors, the elastic moduli were calculated from the seismic velocities. Using empirical correlations from terrestrial soil studies between the shear modulus and cohesion, the previous cohesion estimates were found to be consistent with the elastic moduli. The combined data were used to derive a model of the regolith that has an about 20 cm thick duricrust underneath a 1 cm thick unconsolidated layer of sand mixed with dust and above another 10 cm of unconsolidated sand. Underneath the latter, a layer more resistant to penetration and possibly containing debris from a small impact crater is inferred. The thermal conductivity increases from 14 mW/m K to 34 mW/m K through the 1 cm sand/dust layer, keeps the latter value in the duricrust and the sand layer underneath and then increases to 64 mW/m K in the sand/gravel layer below. Supplementary Information: The online version contains supplementary material available at 10.1007/s11214-022-00941-z.
RESUMO
Innovative composites based on polypropylene waste impurified cu HDPE (PPW) combined with two thermoplastic block-copolymers, namely styrene-butadiene-styrene (SBSBC) and styrene-isoprene-styrene (SISBC) block-copolymers, and up to 10 wt% nano-clay, were obtained by melt blending. SBSBC and SISBC with almost the same content of polystyrene (30 wt%) were synthesized by anionic sequential polymerization and used as compatibilizers for PPW. Optical microscopy evaluation of the PPW composites showed that the n-clay was encapsulated into the elastomer. Addition of n-clay, together with SBSBC or SISBC, increased the interphase surface of the components in the PPW composites and enhanced the superficial area/volume ratio, which led to a recycled material with improved performance. The data resulting from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical evaluation, and dynamic mechanical analysis (DMA) revealed that PPW reinforcement with n-clay and styrene-diene block-copolymers allows the obtaining of composites with favorable mechanical and thermal properties, and excellent impact strength for potential engineering applications.
RESUMO
The challenge of dispersing nanocellulose in hydrophobic polymers such as polylactic acid (PLA) still obstacles the further application of cellulose nanocomposites. An environment-friendly and facile wet-shearing pretreatment strategy without using any organic solvent was developed in this work. Silane modified lignocellulose nanofiber (SLCNF) was pre-dispersed into PLA by wet-shearing pretreatment, followed by extrusion process and the SLCNF could be dispersed extremely well in PLA matrices. SLCNF formed a crosslinked network and had an improved compatibility, which improved the mechanical and thermal properties of PLA composites. The tensile strength, elongation at break and thermal deformation temperature of the composites were increased by 12.6 %, 32.4 % and 9.1 °C, respectively. Moreover, SLCNF promoted the crystallization of PLA as a heterogeneous nucleating agent and the crystallinity was increased by about 40 %. This study provides an effective way to disperse nanocellulose in polymer matrix with high efficiency to enhance polymer-based composites.
Assuntos
Nanofibras , Poliésteres/química , Celulose/química , Polímeros/químicaRESUMO
Phosphogypsum (PG) is a waste (or by-product) of the production of phosphoric acid, a basic constituent in the manufacturing of modern fertilizers. The annual production of phosphogypsum in Tunisia is currently estimated to be 10 million tons. Its storage in slag in close proximity to production plants generates pollution problems; however, valorization may be a solution. The present paper proposes a simple process for the valorization of this by-product into a construction material. Several physicochemical characterizations are used to prove the characteristics of samples. The chemical composition shows that PG is a gypsum compound with several impurities. The morphological analyses show that the powder materials are mesoporous with a lower specific area. The structural characterizations show that these solids play the role of a water pump as the degree of hydration changes from 2 to 0 and vice versa, depending on the temperature. Mechanical and thermal analyses show that the prepared formulation is brittle and insulating, which presents opportunities for it to be used as a decoration material.
RESUMO
In this paper, the structural stability, electronic, optical, mechanical, and thermal properties of diphenylacetylene-based graphyne (DPAG) nanosheet are investigated using first-principle calculations based on density functional theory (DFT). The absolute value of the calculated cohesive energy reveals that DPAG nanosheet is a structurally stable two-dimensional material. Also, in the results of phononic dispersion curves, the absence of imaginary frequencies confirms the dynamic stability of this novel material. In addition, the theoretical electronic band structure and density of states reveal the semiconducting nature of DPAG nanosheet. The optical analysis shows that the first absorption peaks of the imaginary and real parts of dielectric constants along the in-plane and out-of-plane polarizations of DPAG monolayer occur in the visible range of the electromagnetic spectrum. On the other hand, the DPAG nanosheet exhibits orthotropic elastic behavior with four independent constants comparable with the data of similar materials available in the literature. Moreover, DFT calculations of the lattice thermal conductivity of DPAG reveals an anomalously very low thermal conductivity of this nanosheet showing its perfect thermal non-conductivity. Our results provide deep insights into the potential applications of DPAG nanosheet for the design of new optoelectronic/nanoelectronic devices.
RESUMO
The superior mechanical properties of multi-walled carbon nanotubes (MWCNTs) play a significant role in the improvement of the mechanical and thermal stability of an epoxy matrix. However, the agglomeration of carbon nanotubes (CNTs) in the epoxy is a common challenge and should be resolved to achieve the desired enhancement effect. The present paper investigated the thermal, mechanical, and water uptake properties of epoxy nanocomposites with surfactant-modified MWCNTs. The nanocomposites were prepared through the incorporation of different weight concentrations of MWCNTs into the epoxy matrix. Comparative analysis of neat epoxy and epoxy/CNT nanocomposites were conducted through thermal, mechanical, microscopic, and water uptake tests to reveal the improvement mechanism. The homogenous distribution of the CNTs in the epoxy was achieved by wrapping the surfactant onto the CNTs. The addition of surfactant-modified CNTs into the epoxy caused an obvious increase in the mechanical and thermal properties. This improvement mechanism could be attributed to the uniform dispersion of the CNTs in the epoxy matrix reducing the free volume between the polymer chains and restricting the chain segmental mobility, leading to strong interfacial bonding and an efficient load transfer capability between the CNTs and the epoxy matrix. However, the mechanical and thermal properties of the epoxy/CNT nanocomposite decreased owing to the agglomeration effect when the concentration of the CNTs exceeded the optimal percentage of 1.5%. Additionally, the CNTs could impart a reduction in the wettability of the surface of the epoxy/CNT nanocomposite, leading to the increase in the contact angle and a reduction in the water uptake, which was significant to improve the durability of the epoxy. Moreover, the higher weight concentration (2%) of the CNTs showed a greater water uptake owing to agglomeration, which may cause the formation of plenty of microcracks and microvoids in the nanocomposite.
RESUMO
There is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.
RESUMO
Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.
RESUMO
Foams were prepared from nanocellulose-based hydrogel precursors using a freeze-drying process. The work mainly aims at investigating the relationships between the mechanical and thermal properties of foams and the rheological properties of their hydrogel precursors, which were characterized in a previous paper. The structure of foams was characterized by SEM and confocal microscopy, their elasticity by compression tests, and their thermal conductivity by hot strip as well as transient pulsed techniques. A strong correlation was shown between the elastic properties of foams and those of their hydrogel precursors, and a minimum thermal conductivity was shown to appear at a cellulose volume fraction corresponding to a transition in viscoelastic properties of hydrogels. Results suggest that foams and hydrogels share common microstructural features, which makes it possible to tune the mechanical and thermal properties of foams by tuning the rheological properties of their hydrogel precursors.
RESUMO
The active multilayer packaging films were formed from low-density polyethylene (LDPE) and polyamide containing a 2% antimicrobial agent in one of the LDPE sides of the film (LDPE/polyamide/LDPE-2% antimicrobial agent). The antimicrobial agents used were potassium sorbate (PS-film), nisin (N-film), or chitosan (CTS-film). The effects of antimicrobial incorporation on water vapor permeability (P), diffusivity (D eff ), and solubility (S o and S H ) of the active and control films (LDPE/polyamide/LDPE) were investigated. A dynamic vapor sorption analyzer (DVS) was used to estimate the sorption isotherms of the films at 25 °C. Peleg was found to be the best equation to describe sorption behaviors. The addition of PS and nisin into the film matrix resulted in a lower P than that of the control film. The D eff values of the active films were lower than those of control films, except for the CTS-film. The high water-holding capacity of PS and nisin might limit the D eff of the respective films. It was found that Henry's law was applicable to relate P, D eff , and S o and S H values of the multilayer film [correlation coefficient (r) = 0.909-0.971]. The mechanical and thermal properties of the active films were not significantly affected by the incorporation of PS and nisin (p > 0.05). However, the impact of stress and elongation (transverse direction) on the CTS-film was lower than on other films, which indicated that chitosan improved the mechanical properties of the film.
RESUMO
The purpose of this research was synthesis and electron beam modification of novel ester elastomers consisting of sugar alcohol-succinic acid block and butylene glycol-succinic acid block. Four different alditols were used in the synthesis-sorbitol, erythritol, xylitol, and glycerol. The materials were irradiated with doses of 50, 100, and 150 kGy in order to determine which dose is the most beneficial. As expected, irradiation of the materials has led to the cross-link density becoming higher and improvement of the mechanical properties. Additionally, the materials were also sterilized in the process. The great advantage of elastomers described in the paper is the fact that they do not need chemical cross-linking agents or sensitizers in order to undergo radiation modification. The following tests were performed on cross-linked poly(polyol succinate-co-butylene succinate) elastomers: quasi-static tensile test, determination of cross-link density, differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DMTA), wettability (water contact angle), and Fourier transform infrared spectroscopy (FTIR). In order to confirm successful synthesis, prepolymers were analyzed by nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR).
RESUMO
The aim of this work was to investigate the thermal and mechanical properties of novel, electron beam-modified ester elastomers containing multifunctional alcohols. Polymers tested in this work consist of two blocks: sebacic acid-butylene glycol block and sebacic acid-sugar alcohol block. Different sugar alcohols were utilized in the polymer synthesis: glycerol, sorbitol, xylitol, erythritol, and mannitol. The polymers have undergone an irradiation procedure. The materials were irradiated with doses of 50 kGy, 100 kGy, and 150 kGy. The expected effect of using ionizing radiation was crosslinking process and improvement of the mechanical properties. Additionally, a beneficial side effect of the irradiation process is sterilization of the affected materials. It is also worth noting that the materials described in this paper do not require either sensitizers or cross-linking agent in order to perform radiation modification. Radiation-modified poly(polyol sebacate-co-butylene sebacate) elastomers have been characterized in respect to the mechanical properties (quasi-static tensile tests), cross-link density, thermal properties (Differential Scanning Calorimetry (DSC)), chemical properties: Fourier transform infrared spectroscopy (FTIR), and wettability (water contact angle). Poly(polyol sebacate-co-butylene sebacate) preopolymers were characterized with nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR) and gel permeation chromatography (GPC). Thermal stability of cross-linked materials (directly after synthesis process) was tested with thermogravimetric analysis (TGA).
RESUMO
This paper presents an experimental study on the bond behaviour of cement panels reinforced with plant fibres from the recycling of waste jute bags, using starch as a plasticiser. During processing, different proportions of jute (5 wt %, 10 wt %, 15 wt %, and 20 wt %) were used with respect to the weight of cement, and the mixture was exposed to a pressure of 2.6 MPa and a temperature of 100 °C. The density, swelling thickness, internal bonding, flexural strength, and thermal conductivity were studied. Mechanical tests indicated that the values of the modulus of rupture (MOR) and the modulus of elasticity (MOE) increased over time; thus, the jute particles appeared to be protected by the plasticised starch and no degradation was observed. At 28 days, the particleboard with 5% starch had an MOR of 12.82 MPa and an MOE of 3.43 GPa; these values decreased when the jute proportion was higher. The thermal conductivity varied from 0.068 to 0.085 W·m-1·K-1. The main conclusion is that jute-cement-starch composite panels can be manufactured with physical, mechanical, and thermal properties that meet the European standards for use in the construction of buildings as partitions, interior divisions, and thermal insulators.
RESUMO
The main objective of this research was to obtain calcium silicate units from alternative raw materials, such as the bottom ashes from the combustion of wooden boards (WBA), as a source of silica, and GeoSilex (G), a by-product with low energy and environmental costs generated in the manufacture of acetylene, as a source of lime. Once the raw materials were physically, mineralogically and chemically characterized, calcium silicate units were obtained by mixing different amounts of WBA residue (90-20 wt%) and G by-product (10-80 wt%). The mixtures were compressed at 10 MPa and cured in water for 28 days. The calcium silicate units were subjected to a wide experimental program that included the determination of physical properties (bulk density, apparent porosity and water absorption), mechanical properties (compressive strength), and thermal properties (thermal conductivity). Optimum values are obtained for calcium silicate units that contain a 1/1 WBA/G weight ratio, which have an optimal amount of SiO2 and CaO for the cementation reaction. The 50WBA-50g units have compressive strength values of 46.9 MPa and a thermal conductivity value of 0.40 W/mK. However, all calcium silicate units obtained comply with the European Standard EN 771-2: 2011 to be used as structural building materials.
RESUMO
In this research work, graphene nanoplatelets (GNP) were selected as alternative reinforcing nanofillers to enhance the properties of polypropylene (PP) using different compatibilizers called polypropylene grafted maleic anhydride (PP-g-MA) and ethylene-octene elastomer grafted maleic anhydride (POE-g-MA). A twin screw extruder was used to compound PP, GNP, and either the PP-g-MA or POE-g-MA compatibilizer. The effect of GNP loading on mechanical and thermal properties of neat PP was investigated. Furthermore, the influence and performance of different compatibilizers on the final properties, such as mechanical and thermal, were discussed and reported. Tensile, flexural, impact, melting temperature, crystallization temperature, and thermal stability were evaluated by using a universal testing system, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). For mechanical properties, it was found that increasing GNP content from 1 wt.% to 5 wt.% increased tensile strength of the neat PP up to 4 MPa. The influence of compatibilizers on the mechanical properties had been discussed and reported. For instance, the addition of PP-g-MA compatibilizer improved tensile strength of neat PP with GNP loading. However, the addition of compatibilizer POE-g-MA slightly decreased the tensile strength of neat PP. A similar trend of behavior was observed for flexural strength. For thermal properties, it was found that both GNP loading and compatibilizers have no significant influence on both crystallization and melting temperature of neat PP. For thermal stability, however, it was found that increasing the GNP loading had a significant influence on improving the thermal behavior of neat PP. Furthermore, the addition of compatibilizers into the PP/GNP nanocomposite had slightly improved the thermal stability of neat PP.