Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384519

RESUMO

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Assuntos
Proteínas do Domínio Armadillo/biossíntese , Axônios/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas de Drosophila/biossíntese , Evolução Molecular , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Animais , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Serina-Treonina Quinases/genética
2.
Methods Mol Biol ; 2322: 175-184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043203

RESUMO

The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to systematically analyze the functions of genes of interest in vivo. Especially, C. elegans nervous system is suitable for morphological and functional analyses of neuronal genes due to its optical transparency of the body and the well-established anatomy including neural connections. The C. elegans ortholog of Parkinson's disease-associated gene LRRK2, named lrk-1, has been shown to play a role in the regulation of axonal morphology in a subset of neurons. Here I describe the detailed methodologies for the assessment of LRK-1/LRRK2 function as well as the analysis of genetic interaction involving lrk-1/LRRK2 by performing live imaging of C. elegans mechanosenrory neurons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
Elife ; 92020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33103999

RESUMO

Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.


Assuntos
Antenas de Artrópodes/fisiologia , Drosophila melanogaster/fisiologia , Asseio Animal/fisiologia , Mecanorreceptores/fisiologia , Neurônios/fisiologia , Órgãos dos Sentidos/fisiologia , Animais , Drosophila melanogaster/anatomia & histologia , Feminino , Masculino , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/inervação
4.
Neuron ; 103(4): 598-616.e7, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31248728

RESUMO

Dorsal root ganglion (DRG) sensory neuron subtypes defined by their in vivo properties display distinct intrinsic electrical properties. We used bulk RNA sequencing of genetically labeled neurons and electrophysiological analyses to define ion channel contributions to the intrinsic electrical properties of DRG neuron subtypes. The transcriptome profiles of eight DRG neuron subtypes revealed differentially expressed and functionally relevant genes, including voltage-gated ion channels. Guided by these data, electrophysiological analyses using pharmacological and genetic manipulations as well as computational modeling of DRG neuron subtypes were undertaken to assess the functions of select voltage-gated potassium channels (Kv1, Kv2, Kv3, and Kv4) in shaping action potential (AP) waveforms and firing patterns. Our findings show that the transcriptome profiles have predictive value for defining ion channel contributions to sensory neuron subtype-specific intrinsic physiological properties. The distinct ensembles of voltage-gated ion channels predicted to underlie the unique intrinsic physiological properties of eight DRG neuron subtypes are presented.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Canais Iônicos/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Vias Aferentes/fisiologia , Animais , Simulação por Computador , Gânglios Espinais/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Canais Iônicos/biossíntese , Canais Iônicos/genética , Mecanorreceptores/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , RNA/genética , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/classificação , Transcriptoma
5.
Front Physiol ; 10: 1552, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969834

RESUMO

The antennal ear of the fruit fly, called the Johnston's organ (JO), detects a wide variety of mechanosensory stimuli, including sound, wind, and gravity. Like many sensory cells in insect, JO neurons are compartmentalized in a sensory unit (i.e., scolopidium). To understand how different subgroups of JO neurons are organized in each scolopidial compartment, we visualized individual JO neurons by labeling various subgroups of JO neurons in different combinations. We found that vibration-sensitive (or deflection-sensitive) neurons rarely grouped together in a single scolopidial compartment. This finding suggests that JO neurons are grouped in stereotypical combinations each with a distinct response property in a scolopidium.

6.
Dev Growth Differ ; 61(1): 58-72, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30575021

RESUMO

The nervous systems in most bilaterians are centralized, composed of central nervous systems (CNS) and peripheral nervous systems (PNS). Common molecular and cellular patterns of medial nerve cords have been observed in various distantly related bilaterians, suggesting deep homology of CNS. The development patterns of PNS, however, are more diverse than CNS across different phylogenetic lineages and the evolution of PNS so far has been thought to be polygenic. The molecular and cellular programs during the development of PNS among different bilaterian branches are drastically different. For example, vertebrate PNS is essentially derived from neural crest cells and placodes, which are largely vertebrate innovations and do not exist in invertebrates. On the other hand, the lack of common precursor cell types does not necessarily lead to the conclusion of different evolutionary origins. Homology needs to be examined with a deeper and broader scope. In this review, we examined the molecular, cellular and developmental characteristics of PNS in a broad range of bilaterians to summarize our current understanding of variation and potentially conserved themes. These comparisons demonstrate that there exist both migratory and non-migratory neuroblasts in the lateral border of CNS precursors in most model bilaterian animals. These lateral border neuroblasts are specified by conserved gene regulatory network and give rise to sensory neurons, suggesting that lateral border neuroblasts represent the progenitor of PNS and share deep homology among different branches of Bilateria. Future studies are needed to elucidate the evo-devo mechanisms of the lateral neural borders as PNS progenitors.


Assuntos
Neurônios/metabolismo , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Redes Reguladoras de Genes
8.
Front Aging Neurosci ; 8: 173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486399

RESUMO

Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health.

9.
J Comp Neurol ; 522(2): 414-34, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23852943

RESUMO

The antennae of insects contain a vast array of sensory neurons that process olfactory, gustatory, mechanosensory, hygrosensory, and thermosensory information. Except those with multimodal functions, most sensory neurons use acetylcholine as a neurotransmitter. Using immunohistochemistry combined with retrograde staining of antennal sensory neurons in the cockroach Periplaneta americana, we found serotonin-immunoreactive sensory neurons in the antenna. These were selectively distributed in chaetic and scolopidial sensilla and in the scape, the pedicel, and first 15 segments of the flagellum. In a chaetic sensillum, A single serotonin-immunoreactive sensory neuron cohabited with up to four serotonin-negative sensory neurons. Based on their morphological features, serotonin-immunopositive and -negative sensory neurons might process mechanosensory and contact chemosensory modalities, respectively. Scolopidial sensilla constitute the chordotonal and Johnston's organs within the pedicel and process antennal vibrations. Immunoelectron microscopy clearly revealed that serotonin-immunoreactivities selectively localize to a specific type of mechanosensory neuron, called type 1 sensory neuron. In a chordotonal scolopidial sensillum, a serotonin-immunoreactive type 1 neuron always paired with a serotonin-negative type 1 neuron. Conversely, serotonin-immunopositive and -negative type 1 neurons were randomly distributed in Johnston's organ. In the deutocerebrum, serotonin-immunoreactive sensory neuron axons formed three different sensory tracts and those from distinct types of sensilla terminated in distinct brain regions. Our findings indicate that a biogenic amine, serotonin, may act as a neurotransmitter in peripheral mechanosensory neurons.


Assuntos
Antenas de Artrópodes/citologia , Antenas de Artrópodes/metabolismo , Mecanorreceptores/metabolismo , Mecanorreceptores/ultraestrutura , Periplaneta/anatomia & histologia , Serotonina/metabolismo , Animais , Imuno-Histoquímica , Masculino , Mecanotransdução Celular/fisiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Imunoeletrônica , Periplaneta/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA