Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Orthop Traumatol Surg Res ; 110(4): 103853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428485

RESUMO

OBJECTIVES: Whether the application of MBP plus cannulated screws works for old femoral neck fractures (OFNF) is unknown. The purpose of this study is to present a case series of OFNF in young adults using calcar buttress plate and three cannulated screws with autologous iliac bone grafts. METHODS: We conducted a retrospective study of eleven young patients (6 males and 5 females) with femoral neck fractures who were treated with open reduction and internal fixation at a single center between 2013 and 2021. The subjects had trauma-to-surgery intervals longer than 3weeks and all were fixed with a calcar buttress plate combined with three cannulated screws, which were supplemented by autologous iliac bone grafts. RESULTS: All eleven cases achieved radiological union under the surgery technique, which occurred on average at 4.46±1.29months after surgery. Complications included femoral neck shortening in all cases, heterotopic ossification in three cases, and osteonecrosis of the femoral head in two cases. One patient with osteonecrosis of the femoral head received total hip arthroplasty. In follow-ups of 24-52months, the median Harris hip score was 81.64±15.39. CONCLUSIONS: The medial buttress plate in combination with three cannulated screws and iliac autograft may be a good choice for treating old femoral neck fractures in young adults. LEVEL OF EVIDENCE: IV, case series.


Assuntos
Placas Ósseas , Parafusos Ósseos , Transplante Ósseo , Fraturas do Colo Femoral , Fixação Interna de Fraturas , Ílio , Humanos , Masculino , Fraturas do Colo Femoral/cirurgia , Feminino , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Adulto , Ílio/transplante , Adulto Jovem , Transplante Ósseo/métodos , Resultado do Tratamento , Autoenxertos
2.
J Orthop Surg Res ; 18(1): 614, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608280

RESUMO

BACKGROUND: Unstable femoral neck fractures with medial calcar defects are difficult to manage. The optimal fixation methods for these fractures have been a subject of ongoing debate among orthopedic surgeons. In this study, three different fixation techniques for vertical, medial defected femoral neck fractures were compared. METHODS: In this study, a biomechanical analysis was conducted to compare three fixation methods: cannulated screws (Group 1), cannulated screws combined with a medial buttress plate (Group 2), and intramedullary nails (Group 3). Synthetic composite bone models representing vertical collum femoris fractures with medial calcar defects were used. Each group consisted of seven specimens, and, to maintain consistency, a single surgeon performed the surgical procedure. Biomechanical testing involved subjecting the specimens to axial loading until failure, and the load to failure, stiffness, and displacement values were recorded. Normality was tested using the Shapiro-Wilk test. One-way ANOVA and Tukey's HSD post hoc test were used for comparisons. RESULTS: The difference in the load to failure values was statistically significant among the groups, with Group 2 exhibiting the highest load to failure value, followed by Group 3 and Group 1. Stiffness values were significantly higher in Group 2 than in the other groups. Displacement values were not significantly different between the groups. Fracture and displacement patterns at the point of failure varied across the groups. CONCLUSION: The results of this study indicate that fixation with a medial buttress plate in combination with cannulated screws provides additional biomechanical stability for vertical femoral neck fractures with medial calcar defects. Intramedullary nail fixation also demonstrated durable stability in these fractures. These findings can be used to better understand current management strategies for these challenging fractures to promote the identification of better evidence-based recommendations.


Assuntos
Fraturas do Colo Femoral , Fixação Intramedular de Fraturas , Cirurgiões , Humanos , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/cirurgia , Colo do Fêmur , Placas Ósseas
3.
Front Bioeng Biotechnol ; 11: 1143575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937751

RESUMO

Objective: To select the most appropriate internal fixation method based on the Pauwels angle, in order to provide a new concept for clinical accurate treatment of femoral neck fractures (FNFs). Methods: FNFs models of Pauwels 30 ° ; 40 ° ; 50 ° ; 60 ° were created respectively. For Pauwels ≤ 50 ° , 1, 2 and 3 Cannulated Compression Screws (CCS) and Porous Tantalum Screws (PTS) were used to fix the fracture for the models. For Pauwels 60 ° , 3CCS and Medial Buttress Plate (MBP) combined with 1, 2 and 3CCS were used to fix the fracture. Based on the results of the finite element (FE) analysis, the biomechanical properties of each model were compared by analyzing and evaluating the following four parameters: maximal stress of the bone (MBS), maximal stress of the implants (MIS), maximal displacement of bone (MBD), interfragmentary motion (IFM). Results: At Pauwels 30 ° , the larger parameters were found in 1CCS, which was 94.8 MPa (MBS), 307.7 MPa (MIS), 0.86 mm (MBD) and 0.36 mm (IFM). In 2CCS group, the parameters were 86.1 MPa (MBS), 254.4 MPa (MIS), 0.73 mm (MBD) and 0.27 mm (IFM), which were similar to those of PTS. At Pauwels 40 ° ; 50 ° , with the increase of the number of used CCS, accordingly, the parameters decreased. Particularly, the MIS (Pauwels 50 ° ) of 1CCS was 1,195.3 MPa, but the other were less than the yield range of the materials. At Pauwels 60 ° , the MBS of 3CCS group was 128.6 Mpa, which had the risk of failure. In 2CCS + MBP group, the parameters were 124.2 MPa (MBS), 602.5 MPa (MIS), 0.75 mm (MBD) and 0.48 mm (IFM), The model stability was significantly enhanced after adding MBP. Conclusion: Pauwels type Ⅰ (< 30 ° ) fractures can reduce the number of CCS, and PTS is an appropriate alternative treatment. For Pauwels type Ⅱ fractures ( 30 ° ∼ 50 ° ), the 3CCS fixation method is still recommended. For Pauwels type Ⅲ fractures (> 50 ° ), it is recommended to add MBP to the medial femoral neck and combine with 2CCS to establish a satisfactory fracture healing environment.

4.
Zhongguo Gu Shang ; 36(3): 255-61, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36946019

RESUMO

OBJECTIVE: To investigate the biomechanical characteristics of different internal fixations for Pauwels type Ⅲ femoral neck fracture with defect, and provide reference for the treatment of femoral neck fracture. METHODS: Three-dimensional (3D) finite element models of femoral neck fractures were established based on CT images, including fracture and fracture with defects. Four internal fixations were simulated, namely, inverted cannulated screw(ICS), ICS combined with medial buttress plate, the femoral neck system (FNS) and FNS combined with medial buttress plate. The von Mises stress, model stiffness and fracture displacements of fracture models under 2 100 N axial loads were measured and compared. RESULTS: When femoral neck fracture was fixed by ICS and FNS, the peak stress was mainly concentrated on the surface of the screw near the fracture line, and the peak stress of FNS is higher than that of ICS;When the medial buttress plate was combined, the peak stress was increased and transferred to medial buttress plate, with more obvious of ICS fixation. For the same fracture model, the stiffness of FNS was higher than that of ICS. Compared with femoral neck fracture with defects, fracture model showed higher stiffness in the same internal fixation. The use of medial buttress plate increased model stiffness, but ICS increased more than FNS. The fracture displacement of ICS model exceeded that of FNS. CONCLUSION: For Pauwels type Ⅲ femoral neck fracture with defects, FNS had better biomechanical properties than ICS. ICS combined with medial buttress plate can better enhance fixation stability and non-locking plate is recommended. FNS had the capability of shear resistance and needn't combine with medial buttress plate.


Assuntos
Fraturas do Colo Femoral , Humanos , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas/métodos , Parafusos Ósseos , Placas Ósseas , Fenômenos Biomecânicos , Análise de Elementos Finitos
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(8): 1143-1153, 2022 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36097783

RESUMO

OBJECTIVES: Pauwels III fracture is a kind of femoral neck fractures, in which the angle of the fracture line in the coronal plane and the upper edge of the acetabulum is more than 50°. Internal fixation for the treatment of femoral neck fractures is largely performed by cannulated compression screw (CCS), dynamic hip screw, or locking plate. This study aims to compare the biomechanical properties of parallel CCS combined with medial buttress plate fixation and F-type CCS fixation in the treatment of Pauwels III femoral neck fracture by finite element modeling and to determinate the most suitable procedure for such fractures. METHODS: A 52-year-old male volunteer, 176 cm in height and 72 kg in weight, with no history of hip joint, was selected. X-ray and CT examination confirmed that the morphology and bone condition of the right hip of the volunteer were normal. A simulation model of Pauwels III femoral neck fracture was established from the collected CT data of the right proximal femur of the volunteer by the finite element method. Four internal fixations were developed to treat the finite element model: Three CCSs in an inverted triangular parallel configuration combined with medial buttress plate model served as Group A, 2 CCSs in a vertical parallel configuration combined with medial buttress plate model served as Group B, 2 CCSs in a horizontal parallel configuration combined with medial buttress model served as Group C, and the "F" shaped CCS model served as Group D. The distribution of stress, the peak stress, the distribution and maximum of displacement of internal fixations and fracture ends in different models were evaluated. RESULTS: For Groups A, B, C, and D, the peak stresses on the internal fixation were 362.74, 586.84, 558.25, and 208.66 mPa, respectively, all of which occurred near the fractures and the stress distribution in Group D was the most uniform. The maximum displacements of internal fixations in Groups A, B, C, and D were 0.39, 0.45, 0.44, and 0.41 mm, respectively; the peak stresses on the fracture ends were 70.62, 98.48, 55.84, and 65.39 mPa, respectively, all of which were concentrated on the base of femoral neck and lateral cortex of the femoral shaft, and the stresses of Groups C and D were more evenly distributed than those of Groups A and B. The maximum displacements of fracture ends in Groups A, B, C, and D were 0.44, 0.52, 0.50, and 0.44 mm, respectively. CONCLUSIONS: The biomechanical stability of F-type CCS fixation is similar to that of 3 CCSs in an inverted triangular parallel configuration combined with medial buttress plate, with a better dispersion of stress. F-type CCS fixation may be a well option for the treatment of femoral neck fracture of Pauwels III.


Assuntos
Fraturas do Colo Femoral , Placas Ósseas , Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Análise de Elementos Finitos , Fixação Interna de Fraturas/métodos , Humanos , Masculino , Pessoa de Meia-Idade
6.
Injury ; 53(10): 3115-3123, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35999063

RESUMO

BACKGROUND AND OBJECTIVE: The best internal fixation method for the treatment of Pauwels type III femoral neck fractures (FNFs) remains to be demonstrated. Through finite element analysis, this study explored whether dynamic hip screw (DHS) combined with anti rotation screw or medial buttress plate can improve the stability of internal fixation, and the femoral neck system (FNS) with similar structure to DHS and the traditional cannulated screw (CSs) were added for comparison. To evaluate their respective biomechanical advantages and disadvantages in the treatment of Pauwels type III FNFs. METHODS: Six groups of internal fixation models for the treatment of FNFs were established, including CSs, DHS, DHS combined with single anti-rotation screw (DHS + SS), and DHS combined with both anti-rotation screw (DHS + BS), DHS combined with medial buttress plate (DHS + MBP), new femoral neck internal fixation system (Femoral Neck System, FNS). Four finite element analysis models were established for each group, evaluation of femoral displacement and internal fixation stress during stair climbing and walking conditions, and the contact force of the hip joint was used in two cases, dynamic and static. RESULTS: The fracture plane motion and peak stress of internal fixators were the lowest with DHS + BS and CSs fixation, and the two results are very close, The peak value of DHS combined with anti rotation screw or medial buttress plate is much lower than that of DHS, indicating that the fixation effect of the combined model is enhanced, and there is no significant difference between FNS and DHS + SS. CONCLUSION: Both the anti rotation screw and medial buttress plate can effectively reduce the movement of fracture section and share the shear force of DHS, FNS has the similar fixation stability to DHS + SS, DHS + BS has the biomechanical advantages of significantly reducing the risk of internal fixation failure and femoral yield. Therefore, the use of DHS + BS may be a more favorable choice in the case of Pauwels type III FNFs with higher fixation requirements.


Assuntos
Fraturas do Colo Femoral , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Análise de Elementos Finitos , Fixação Interna de Fraturas/métodos , Humanos
7.
Injury ; 53(10): 3124-3129, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35803747

RESUMO

BACKGROUND: Cannulated screws augmented with the medial buttress plate could confer greater biomechanical stability and higher union rates than the screw fixation alone for treating young patients with Pauwels type III femoral neck fractures (FNFs). No study has evaluated the effects of distal bicortical screw fixation and biomechanical properties of buttress plate augmentation under simultaneous vertical and rotational forces, physiologically acting on the hip joint. This study aimed to compare the biomechanical properties of four methods of three cannulated screw fixation under the combined axial and torsional loading in a synthetic femur model of type III FNF. METHODS: Twenty-four third-generation composite femora were divided into four groups (6 femora in each group) based on the screw fixation configuration: inverted triangle configuration (Group A),  Pauwels' configuration (Group B), inverted triangle configuration combined with medial buttress plate using distal unicortical (Group C), and distal bicortical screw placement (Group D). A Pauwels type III FNF was simulated on the sawbones. Each model was subjected to the combined axial and torsional cyclic loading and subsequently tested to failure. RESULT: Significant differences were determined in axial stiffness (AS) among the four groups (p = 0.024), whereas there was no significant difference in torsional stiffness (p = 0.147). The mean AS was higher in group D (639.5 ± 86.2 N/mm) than in group A (430.6 ± 94.8 N/mm), group B (426.2 ± 41.9 N/mm), and group C (451.2 ± 156.7 N/mm). Failure forces (FFs) were significantly different among four groups (p = 0.007), while there was no considerable difference in failure moment values (p = 0.555). The mean FF was significantly higher in group D (1307.1 ± 96.4 N) than in group A  (1076.9 ± 371.2 N) and group B (1075.5 ± 348.3 N) (p = 0.014 and p = 0.018, respectively). There was no significant difference in the mean FF between groups D and C. CONCLUSION: Regardless of the medial plate use, multiple cannulated systems could provide similar biomechanical results regarding torsional stiffness and failure moments. Bicortical placement of the most distal screw in medial buttress plate application could improve axial stability but not significantly affect the rotational stability of the inverted triangle screw fixation system in managing type III FNFs.


Assuntos
Fraturas do Colo Femoral , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Fêmur , Fixação Interna de Fraturas/métodos , Humanos
8.
Orthop Surg ; 14(5): 911-918, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35445587

RESUMO

OBJECTIVE: To investigate the outcomes of open reduction and internal fixation combined with medial buttress plate (MBP) and allograft bone-assisted cannulated screw (CS) fixation for patients with unstable femoral neck fracture with comminuted posteromedial cortex. METHODS: In a retrospective study of patients operated on for unstable femoral neck fractures with comminuted posteromedial cortex from March 2016 to August 2020, the clinical and radiographic outcomes of 48 patients treated with CS + MBP were compared with the outcomes of 54 patients treated with CS only. All patients in the CS + MBP group were fixed by three CS and MBP (one-third tubular plates or reconstructive plates) with bone allografts. The surgery-related outcomes and complications were evaluated, including operative time, blood loss, union time, femoral head necrosis, femoral neck shortening, and other complications after the operation. The Harris score was evaluated at 12 months after the operation. RESULTS: All patients were followed up for 12-40 months. The average age of patients in the CS-only group (54 cases, 22 females) and CS + MBP group (48 cases, 20 females) was 48.46 ± 7.26 and 48.73 ± 6.38 years, respectively. More intraoperative blood loss was observed in the CS + MBP group than that of patients in CS-only group (153.45 ± 64.27 vs 21.86 ± 18.19 ml, t = 4.058, P = 0.015). The average operative time for patients in the CS + MBP group (75.35 ± 27.67 min) was almost double than that of patients in the CS-only group (36.87 ± 15.39 min) (t = 2.455, P < 0.001). The Garden alignment index of patients treated by CS + MBP from type I to type IV was 79%, 19%, 2%, and 0%, respectively. On the contrary, they were 31%, 43%, 24% and 2% for those in the CS-only group, respectively. The average healing times for the CS-only and CS + MBP groups were 4.34 ± 1.46 and 3.65 ± 1.85 months (t = 1.650, P = 0.102), respectively. Femoral neck shortening was better in the CS + MBP group (1.40 ± 1.73 mm, 9/19) than that in the CS-only group (4.33 ± 3.32 mm, 24/44). Significantly higher hip function was found in the CS + MBP group (85.60 ± 4.36 vs 82.47 ± 6.33, t = 1.899, P = 0.06). There was no statistical difference between femoral head necrosis (4% vs 11%, χ2  = 1.695, P = 0.193) and nonunion (6% vs 9%, χ2  = 0.318, P = 0.719). CONCLUSION: For unstable femoral neck fractures with comminuted posteromedial cortex, additional MBP combined with bone allografts showed better reduction quality and neck length control than CS fixation only, with longer operative time and more blood loss.


Assuntos
Fraturas do Colo Femoral , Necrose da Cabeça do Fêmur , Fraturas Cominutivas , Adulto , Aloenxertos , Parafusos Ósseos , Feminino , Fraturas do Colo Femoral/etiologia , Fraturas do Colo Femoral/cirurgia , Necrose da Cabeça do Fêmur/etiologia , Fixação Interna de Fraturas/efeitos adversos , Fraturas Cominutivas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
9.
Indian J Orthop ; 56(2): 303-311, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35140862

RESUMO

PURPOSE: This study aimed to evaluate the incidence of femoral neck shortening (FNS) after the treatment of displaced and non-displaced femoral neck fractures with closed or open reduction internal fixation, and determine the independent factors associated with this condition. METHOD: The study included 81 patients who underwent internal fixation by closed or open reduction with multiple screws between 2013 and 2018 due to femoral neck fracture (FNF) and were followed up for at least 1 year. Patients were divided into two groups as with and without FNS. The patient, fracture, and surgical parameters compared between the two groups, and the factors affecting development of FNS were investigated. RESULTS: Internal fixation was applied by closed reduction in 56 patients (69.1%) and open in 25 (30.9%). FNS was detected in 41 patients (50.6%), with the mean shortening 6.3 ± 6.4 mm. Fracture union achieved in 72 patients (89%). The mean time to fracture union was 4.3 ± 2.3 months.No statistically significant relationship found between FNS and the parameters of gender, age, smoking, reduction type, number, type and orientation of screws, Singh index, and Garden fix index (p > 0.05).However, there was significant difference between two groups regarding energy of the fracture, fragmentation, coronal angulation, Garden type, and fixation with medial buttress plate (p < 0.05). CONCLUSION: FNS is an expected condition in FNF fixed by screws. Patients with high-energy traumas and advanced Garden types are more likely to have FNS. The use of medial plate may be effective in preventing FNS.

10.
BMC Musculoskelet Disord ; 23(1): 49, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031036

RESUMO

BACKGROUND: Femoral neck fractures in young people are usually Pauwels Type III fractures. The common treatment method are multiple parallel cannulated screws or dynamic hip screw sliding compression fixation. Due to the huge shear stress, the rate of complications such as femoral head necrosis and nonunion is still high after treatment. The aim of our study was to compare the stabilities of two fixation methods in fixating pauwels type III femoral neck fractures. METHODS: All biomimetic fracture samples are fixed with three cannulated screws combined with a medial buttress plate. There were two fixation groups for the buttress plate and proximal fracture fragment: Group A, long screw (40 mm); Group B, short screw (6 mm). Samples were subjected to electrical strain measurement under a load of 500 N, axial stiffness was measured, and then the samples were axially loaded until failure. More than 5 mm of displacement or synthetic bone fracture was considered as construct failure. RESULTS: There were no significant differences in failure load (P = 0.669), stiffness (P = 0.842), or strain distribution (P > 0.05) between the two groups. CONCLUSIONS: Unicortical short screws can provide the same stability as long screws for Pauwels Type III Femoral Neck Fractures.


Assuntos
Fraturas do Colo Femoral , Adolescente , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas , Humanos , Estresse Mecânico
11.
Comput Methods Programs Biomed ; 196: 105714, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32858283

RESUMO

BACKGROUND AND OBJECTIVE: It remains controversial regarding the optimal type of fixation implant for the treatment of femoral neck fractures (FNFs). Biomechanical rational for implant choices can benefit from the integration of finite element analysis (FEA) in device evaluation and design improvement. In this study, we aim to evaluate biomechanical performance of several internal fixation implants for Pauwels type III FNFs under physiological loading conditions using FEA, as well as to assess the biomechanical contribution of medial buttress plate (MBP) augmentation. METHODS: Several fixation styles for FNFs have been analyzed numerically by the finite element method. Five groups of models were developed with different FNFs fixation implants, including dynamic hip screw (DHS), cannulated screws (CSs), proximal femoral nail antirotation (PFNA), DHS with MBP augmentation (DHS+MBP), and CSs with MBP (CSs+MBP). For each group, four FE models were established to evaluate strain in bone and stress in devices during walking and stair climbing conditions, which simulated the hip contact force using static and dynamic loadings respectively. RESULTS: No notable differences were observed in peak strain within implanted bone and maximum stress values of the device between DHS and CSs. The implanted femur with PFNA was in a lower state of bone strain and implant stress. Although the buttress plate did not decrease peak bone strain, it alleviated stress concentration on device, especially for CSs under dynamic loadings. CONCLUSIONS: Compared to the other fixation styles, the PFNA showed biomechanical advantages of decreasing risk of implant failure and bone yielding. The MBP augmentation provided an additional load path to bridge fracture fragments, which reduced failure risk of DHS and CSs, especially during dynamic loading scenarios. Although further studies are needed for patients with other types of FNFs, our findings may provide valuable references for device design optimization in terms of complex physiological loadings, as well as for clinical decision making in surgical treatment of FNFs.


Assuntos
Fraturas do Colo Femoral , Fenômenos Biomecânicos , Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Fêmur , Análise de Elementos Finitos , Fixação Interna de Fraturas , Humanos
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 31(2): 165-170, 2017 02 15.
Artigo em Chinês | MEDLINE | ID: mdl-29786247

RESUMO

Objective: To evaluate the biomechanical properties of proximal femoral medial buttress plate (PFMBP) for fixing the reverse oblique intertrochanteric fractures by comparing with proximal femoral locking compression plate (PFLCP) and proximal femoral nail antirotation (PFNA). Methods: Eighteen synthetic femoral bone models (Synbone) were divided into 3 groups (group PFLCP, group PFNA, and group PFMBP), 6 models in each group; an AO 31-A3.1 reverse oblique femoral intertrochanteric fracture was made based on the same criterion. After being fixed and embeded, the axial load testing, torsion testing, and axial load-to-failure testing were performed on each model. The axial displacement of different loads, torque of different torsion angles, and failure load of each model were recorded, and the stiffness of axial load and torsion were calculated. Results: The axial stiffness in groups PFLCP, PFNA, and PFMBP were (109.42±30.14), (119.13±29.14), and (162.05±22.05) N/mm respectively, showing significant differences between groups ( P<0.05). There were significant differences in torque between different torsion angles in the same group, as well as in the torque between groups at the same torsional angle ( P<0.05). The torsion stiffness in groups PFLCP, PFNA, and PFMBP were (1.45±0.44), (1.10±0.13), and (1.36±0.32) N·mm/deg respectively; there were significant differences when compared groups PFLCP and PFMBP with group PFNA ( P<0.05), but no significant difference was found between group PFLCP and group PFMBP ( P>0.05). The failure loads of groups PFLCP, PFNA, and PFMBP were (1 408.88± 0.17), (1 696.56±0.52), and (2 154.65±0.10) N respectively, showing significant differences between groups ( P<0.05). Conclusion: The newly-designed PFMBP is better than PFNA and PFLCP in axial load stiffness and torsion stiffness for fixing reverse oblique intertrochanteric fracture by biomechanical test, indicating that reconstruction of medial stability is a key element for unstable intertrochanteric fracture.


Assuntos
Pinos Ortopédicos , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fenômenos Biomecânicos , Fêmur , Fixação Interna de Fraturas , Fraturas do Quadril , Humanos , Modelos Anatômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA