Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39104318

RESUMO

Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: FiO2 = 0.21) or under hypercapnia or hypoxia challenges (FiCO2 = 0.07 or FiO2 = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in VE (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 ml/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 ml/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e breathing frequency, inspiration, postinspiration and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.

2.
Clin Exp Nephrol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098924

RESUMO

BACKGROUND: Fibrosis is a common final pathway leading to end-stage renal failure. As the renal medulla and cortex contain different nephron segments, we analyzed the factors associated with the progression of renal medullary and cortical fibrosis. METHODS: A total of 120 patients who underwent renal biopsy at Kawashima Hospital between May 2019 and October 2022 were enrolled in this retrospective study. Renal medullary and cortical fibrosis and stiffness were evaluated using Masson's trichrome staining and shear wave elastography, respectively. Maximum urine osmolality in the Fishberg concentration test was also examined. RESULTS: Medullary fibrosis was positively correlated with cortical fibrosis (p < 0.0001) and log-converted urinary ß2-microglobulin (MG) (log urinary ß2-MG) (p = 0.022) and negatively correlated with estimated glomerular filtration rate (eGFR) (p = 0.0002). Cortical fibrosis also correlated with log urinary ß2-MG, eGFR, and maximum urine osmolality. Multivariate analysis revealed that cortical fibrosis levels (odds ratio [OR]: 1.063) and medullary stiffness (OR: 1.089) were significantly associated with medullar fibrosis (≧45%). The severe fibrosis group with both medullary fibrosis (≧45%) and cortical fibrosis (≧25%) had lower eGFR and maximum urine osmolality values and higher urinary ß2-MG levels than the other groups. CONCLUSIONS: Patients with disorders involving both renal medullary and cortical fibrosis had decreased maximum urine osmolality but had no abnormalities in the urinary concentrating capacities with either condition. Renal medullary and cortical fibrosis were positively correlated with urinary ß2-MG, but not with urinary N-acetyl-beta-D-glucosaminidase.

3.
Clin Neurol Neurosurg ; 245: 108474, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39096581

RESUMO

BACKGROUND: Opalski syndrome, a subtype of lateral medullary syndrome (LMS), poses challenges due to its diverse clinical presentations and potential atypical symptoms. Understanding its epidemiology, clinical manifestations, and outcomes is crucial for optimizing patient care. METHODS: A systematic review, following PRISMA 2020 guidelines, was conducted to comprehensively analyze Opalski syndrome. Data from PubMed, Scopus, Web of Science, and Embase were included, with the search conducted in May 2023. Eligible studies spanned from included case reports, case series, and editorial letters. RESULTS: The review encompassed 78 studies from 1984 to 2024, involving 94 patients with Opalski syndrome. The analysis revealed a male predominance (76.60 %) with a male-to-female ratio of 3.1:1. Common risk factors included hypertension (63.54 %), diabetes mellitus (32.29 %), smoking (32.39 %), and alcohol consumption (22.91 %). Opalski syndrome cases were reported in 22 countries across 5 continents, with Asia being the most prevalent region (77.08 %). Initial presentations commonly included ataxia or positive finger-to-nose and knee-to-heel tests, dizziness or vertigo, hemiparesis, nystagmus, Horner's sign, and 5th or 7th cranial nerve palsy, all occurring in more than 50 % of cases. Neuroimaging techniques such as magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) were crucial for diagnosis. Despite a mortality rate of 4.16 %, no deaths have been reported since 2014, indicating advancements in clinical management. CONCLUSION: Targeted risk factor management, early recognition of symptoms, and utilization of advanced neuroimaging techniques are essential for optimizing patient outcomes. Clinicians must remain informed about Opalski syndrome to enhance diagnostic accuracy and tailor treatment strategies.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39121113

RESUMO

BACKGROUND: Renal perfusion status remains poorly studied at the bedside during sepsis associated acute kidney injury (AKI). The aim of the study is to examine renal cortical and medullary perfusion using renal contrast enhanced ultrasound (CEUS) in septic patients. METHODS: In this single-center, prospective longitudinal study, septic patients were enrolled. Renal ultrasonography was performed within 24 hours of ICU admission (D1), then repeated at D3, D5 and D7. Each measurement consisted of three destruction replenishment sequences that were recorded for delayed analysis with dedicated software (Vuebox). Renal cortex and medulla perfusion were quantified by measuring time to peak (TTP). Receiver operating characteristic (ROC) analysis was used to evaluate 28-day renal prognosis. RESULTS: The study included 149 septic patients, including 70 non-AKI patients and 79 AKI patients. Both renal cortical and medullary TTP was longer in the AKI group than in the non-AKI group. The difference of TTP between renal cortex and medulla in AKI group was higher than that in the non-AKI group (p = 0.000). Medullary TTP on day 3 had the best performance in predicting the prognosis of 28-day renal function (AUC 0.673, 95% confidence interval 0.528-0.818, p = 0.024), and its cut-off value was 45 s with a sensitivity 52.2% and a specificity of 82.1%. Cortical TTP on day 3 also had the performance in predicting the prognosis of 28-day renal function (AUC 0.657, 95% confidence interval 0.514-0.800, p = 0.039), and its cut-off value was 33 s with a sensitivity 78.3% and a specificity of 55.0%. CONCLUSION: Renal medullary perfusion alterations differ from those in cortex, with the medulla is worse. Simultaneous and dynamic assessment of cortical and medullary microcirculatory flow alterations necessary. TTP on day 3, especially medullary TTP, seems to be a relatively stable and useful indicator, which correlates with 28-day renal function prognosis in septic patients. Early correction of renal cortical and medullary perfusion alterations reduces the incidence of adverse renal events.

5.
Cell Stem Cell ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39208804

RESUMO

Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Despite its essential role in vital body functions, the medulla of the hindbrain has seen a lack of in vitro models, let alone models resembling specific medullary nuclei, including the crucial spinal trigeminal nucleus (SpV) that relays peripheral sensory signals to the thalamus. Here, we report a method to differentiate human pluripotent stem cells into region-specific brain organoids resembling the dorsal domain of the medullary hindbrain. Importantly, organoids specifically recapitulated the development of the SpV derived from the dorsal medulla. We also developed an organoid system to create the trigeminothalamic projections between the SpV and the thalamus by fusing these organoids, namely human medullary SpV-like organoids (hmSpVOs), with organoids representing the thalamus (hThOs). Our study provides a platform for understanding SpV development, nucleus-based circuit organization, and related disorders in the human brain.

6.
Front Immunol ; 15: 1442906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011038

RESUMO

Various types of professional immune cells first emerge in fish and likely represent the primordial form and functions. Recent advancements revealed the direct connection between the central nervous system and the immune system in the mammalian brain. However, the specifics of brain-immune networks in the fish and the underlying mechanisms of teleost's brain against pathogen infection have not been fully elucidated. In this study, we investigated the distribution of markers representing cerebral cells associated with protection and professional lymphocytes in the seven major components of the Nile tilapia brain through RNA-Seq assay and observed the most dominant abundance in the medulla oblongata. The subsequent challenge test revealed the non-specific cytotoxic cells (NCCs) exhibited the strongest response against streptococcal infection of the brain. The presence of NCCs in the brain was then confirmed using immunofluorescence and the cytotoxic effects usually induced by NCCs under infection were determined as well. Collectively, these findings contribute significantly to comprehending the mechanism of fish neuroimmune interaction and enhancing our understanding of its evolutionary development.


Assuntos
Doenças dos Peixes , Bulbo , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Bulbo/imunologia , Encéfalo/imunologia , Encéfalo/microbiologia , Tilápia/imunologia , Tilápia/microbiologia , Ciclídeos/imunologia , Ciclídeos/microbiologia
7.
J Comp Neurol ; 532(7): e25656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980012

RESUMO

Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.


Assuntos
Glândulas Suprarrenais , Nervo Vago , Nervo Vago/fisiologia , Humanos , Animais , Glândulas Suprarrenais/fisiologia , Inflamação
8.
Front Neurol ; 15: 1376019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957353

RESUMO

Introduction: Neurogenic hypertension (HTN) is a type of HTN characterized by increased activity of the sympathetic nervous system. Vascular compression is one of the pathogenic mechanisms of neurogenic HTN. Despite Jannetta's solid anatomical and physiological arguments in favor of neurogenic HTN in the 1970's, the treatment for essential HTN by microvascular decompression (MVD) still lacks established selection criteria. Therefore, the subjects selected for our center were limited to patients with primary trigeminal neuralgia (TN) and primary hemifacial spasm (HFS) of the vertebral/basilar artery (VA/BA) responsible vessel type coexisting with neurogenic HTN who underwent MVD of the brainstem to further explore possible indications for MVD in the treatment of neurogenic HTN. Methods: A retrospective analysis of 63 patients who were diagnosed with neurogenic HTN had symptoms of HFS and TN cranial nerve disease. Patients were treated at our neurosurgery department from January 2018 to January 2023. A preoperative magnetic resonance examination of the patients revealed the presence of abnormally located vascular compression in the rostral ventrolateral medulla (RVLM) and the root entry zone (REZ) of the IX and X cranial nerves (CN IX- X). Results: There was no significant difference between the two groups in terms of gender, age, course of HFS, course of TN, course of HTN, degree of HTN, or preoperative blood pressure. Based on the postoperative blood pressure levels, nine out of 63 patients were cured (14.28%), eight cases (12.70%) showed a marked effect, 16 cases (25.40%) were effective, and 30 cases were invalid (47.62%). The overall efficacy was 52.38%. However, 39 cases of combined cranial nerve disease were on the left side of the efficacy rate (66.67%) and 24 cases of combined cranial nerve disease were on the right side of the efficacy rate (29.16%). Discussion: Over the last few decades, many scholars have made pioneering progress in the clinical retrospective study of MVD for neurogenic hypertension, and our study confirms the efficacy of MVD in treating vertebral/basilar artery-type neurogenic hypertension by relieving the vascular pressure of RVLM. In the future, with the development and deepening of pathological mechanisms and clinical observational studies, MVD may become an important treatment for neurogenic hypertension by strictly grasping the surgical indications. Conclusion: MVD is an effective treatment for neurogenic HTN. Indications may include the following: left-sided TN or HFS combined with neurogenic HTN; VA/BA compression in the left RVLM and REZ areas on MRI; and blood pressure in these patients cannot be effectively controlled by drugs.

9.
Mol Pain ; 20: 17448069241270295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39054310

RESUMO

The transmission of nociceptive and pruriceptive signals in the spinal cord is greatly influenced by descending modulation from brain areas such as the rostral ventromedial medulla (RVM). Within the RVM three classes of neurons have been discovered which are relevant to spinal pain modulation, the On, Off, and Neutral cells. These neurons were discovered due to their functional response to nociceptive stimulation. On cells are excited, Off cells are inhibited, and Neutral cells have no response to noxious stimulation. Since these neurons are identified by functional response characteristics it has been difficult to molecularly identify them. In the present study, we leverage our ability to perform optotagging within the RVM to determine whether RVM On, Off, and Neutral cells are GABAergic. We found that 27.27% of RVM On cells, 47.37% of RVM Off cells, and 42.6% of RVM Neutral cells were GABAergic. These results demonstrate that RVM On, Off, and Neutral cells represent a heterogeneous population of neurons and provide a reliable technique for the molecular identification of these neurons.


Assuntos
Neurônios GABAérgicos , Bulbo , Bulbo/fisiologia , Bulbo/citologia , Animais , Neurônios GABAérgicos/metabolismo , Masculino , Ratos Sprague-Dawley , Ratos
10.
Neurochem Int ; 178: 105800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964718

RESUMO

Hepatic encephalopathy (HE) is a neurological complication arising from acute liver failure with poor prognosis and high mortality; the underlying cellular mechanisms are still wanting. We previously found that neuronal death caused by mitochondrial dysfunction in rostral ventrolateral medulla (RVLM), which leads to baroreflex dysregulation, is related to high fatality in an animal model of HE. Lipocalin-2 (Lcn2) is a secreted glycoprotein mainly released by astrocytes in the brain. We noted the presence of Lcn2 receptor (Lcn2R) in RVLM neurons and a parallel increase of Lcn2 gene in astrocytes purified from RVLM during experimental HE. Therefore, our guiding hypothesis is that Lcn2 secreted by reactive astrocytes in RVLM may underpin high fatality during HE by eliciting bioenergetic failure-induced neuronal death in this neural substrate. In this study, we first established the role of astrocyte-secreted Lcn2 in a liver toxin model of HE induced by azoxymethane (100 µg/g, ip) in C57BL/6 mice, followed by mechanistic studies in primary astrocyte and neuron cultures prepared from postnatal day 1 mouse pups. In animal study, immunoneutralization of Lcn2 reduced apoptotic cell death in RVLM, reversed defunct baroreflex-mediated vasomotor tone and prolonged survival during experimental HE. In our primary cell culture experiments, Lcn2 produced by cultured astrocytes and released into the astrocyte-conditioned medium significantly reduced cell viability of cultured neurons. Recombinant Lcn2 protein reduced cell viability, mitochondrial ATP (mitoATP) production, and pyruvate dehydrogenase (PDH) activity but enhanced the expression of pyruvate dehydrogenase kinase (PDK) 1, PDK3 and phospho-PDHA1 (inactive PDH) through MAPK/ERK pathway in cultured neurons, with all cellular actions reversed by Lcn2R knockdown. Our results suggest that astrocyte-secreted Lcn2 upregulates PDKs through MAPK/ERK pathway, which leads to reduced PDH activity and mitoATP production; the reinforced neuronal death in RVLM is causally related to baroreflex dysregulation that underlies high fatality associated with HE.


Assuntos
Astrócitos , Morte Celular , Modelos Animais de Doenças , Encefalopatia Hepática , Lipocalina-2 , Camundongos Endogâmicos C57BL , Neurônios , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lipocalina-2/metabolismo , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Morte Celular/fisiologia , Masculino , Metabolismo Energético/fisiologia , Metabolismo Energético/efeitos dos fármacos , Células Cultivadas
11.
Am J Physiol Heart Circ Physiol ; 327(3): H614-H630, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028279

RESUMO

Maternal major depressive disorder with peripartum onset presents health risks to the mother and the developing fetus. Using a rat model of chronic mild stress, we previously reported on the neurodevelopmental impact of maternal perinatal stress on their offspring. This study examined the cardiovascular impact of maternal perinatal stress on their offspring. The cardiovascular impact was assessed in terms of blood pressure and echocardiographic parameters. The results examined by a three-way ANOVA showed a significant association of cardiovascular parameters with maternal perinatal stress and offspring sex and age. Increased blood pressure was observed in adolescent female and adult male offspring of stress-exposed dams. Echocardiography showed an increase in left atrial dimension and a reduction in left ventricular systolic function in adolescent stress-exposed female offspring. Increased interventricular septum thickness at end-diastole and left ventricular diastolic dysfunction were observed in adult stress-exposed male offspring. The underlying mechanisms of cardiovascular impact were examined in stress-exposed adult offspring by assessing the levels of neurotransmitters and their metabolites in the medulla oblongata using high-performance liquid chromatography. A significant decrease in homovanillic acid, a dopamine metabolite and indicator of dopaminergic activity, was observed in adult stress-exposed female offspring. These results suggest a significant sex- and age-dependent impact of maternal stress during the peripartum period on the cardiovascular system in the offspring that extends to adulthood and suggests a multigenerational effect. The presented data urgently need follow-up to confirm their potential clinical and public health relevance.NEW & NOTEWORTHY We demonstrate that maternal perinatal stress is associated with sex- and age-dependent impact on the cardiovascular system in their offspring. The effect was most significant in adolescent female and adult male offspring. Observed changes in hemodynamic parameters and dopaminergic activity of the medulla oblongata are novel results relevant to understanding the cardiovascular impact of maternal perinatal stress on the offspring. The cardiovascular changes observed in adult offspring suggest a potential long-term, multigenerational impact of maternal perinatal stress.


Assuntos
Pressão Sanguínea , Dopamina , Bulbo , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico , Animais , Feminino , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Bulbo/metabolismo , Dopamina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Fatores Sexuais , Fatores Etários , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda , Modelos Animais de Doenças
12.
J Physiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057844

RESUMO

Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury. The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia. We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W. We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality. The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use. KEY POINTS: Acute kidney injury is a global health problem associated with high morbidity and mortality. The pharmacological blockade of inducible nitric oxide synthase (iNOS) has been proposed as a potential strategy to prevent AKI induced by ischaemia and reperfusion (I/R). Our main finding is that 1400W, a selective and irreversible iNOS inhibitor with low toxicity that is proposed as a therapeutic strategy to prevent kidney I/R injury, produces aberrant gene expression in the medulla associated to tissue injury, cell cycle arrest, inflammation, mesenchymal transition and endothelial activation. The negative effect of 1400W observed in the renal medulla at 48 h from drug administration, is transient as it did not translate into a chronic kidney disease condition.

13.
Biology (Basel) ; 13(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39056659

RESUMO

The morphological and compositional complexities of keratinized components make feathers ingenious skin appendages adapted to diverse ecological needs. Frizzling feathers, characterized by their distinct curling phenotypes, offer a unique model to explore the intricate morphogenesis in developing a keratin-based bioarchitecture over a wide range of morphospace. Here, we investigated the heterogeneous allocation of α- and ß-keratins in flight feather shafts of homozygous and heterozygous frizzle chickens by analyzing the medulla-cortex integrations using quantitative morphology characterizations across scales. Our results reveal the intriguing construction of the frizzling feather shaft through the modified medulla development, leading to a perturbed balance of the internal biomechanics and, therefore, introducing the inherent natural frizzling compared to those from wild-type chickens. We elucidate how the localized developmental suppression of the α-keratin in the medulla interferes with the growth of the hierarchical keratin organization by changing the internal stress in the frizzling feather shaft. This research not only offers insights into the morphogenetic origin of the inherent bending of frizzling feathers but also facilitates our in-depth understanding of the developmental strategies toward the diverse integuments adapted for ecological needs.

14.
Eur J Neurosci ; 60(5): 4861-4876, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054660

RESUMO

Accumulating evidence suggests that electroacupuncture (EA) has obvious therapeutic effects and unique advantages in alleviating myocardial ischemia-reperfusion injury (MIRI), while the underlying neuromolecular mechanisms of EA intervention for MIRI have not been fully elucidated. The aim of the study is to investigate the role of the neural pathway of hypothalamic paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) in the alleviation of MIRI rats by EA preconditioning. MIRI models were established by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 2 h. Electrocardiogram recording, chemogenetics, enzyme-linked immunosorbent assay, multichannel physiology recording and haematoxylin-eosin and immunofluorescence staining methods were conducted to demonstrate that the firing frequencies of neurons in the PVN and the expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI) and lactic dehydrogenase (LDH). Virus tracing showed a projection connection between PVN and RVLM. The inhibition of the PVN-RVLM neural pathway could replicate the protective effect of EA pretreatment on MIRI rats. However, the activation of the pathway weakened the effect of EA preconditioning. EA pretreatment alleviated MIRI by regulating PVN neurons projecting to RVLM. This work provides novel evidence of EA pretreatment for alleviating MIRI.


Assuntos
Eletroacupuntura , Bulbo , Traumatismo por Reperfusão Miocárdica , Neurônios , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Animais , Eletroacupuntura/métodos , Núcleo Hipotalâmico Paraventricular/metabolismo , Bulbo/metabolismo , Bulbo/fisiologia , Masculino , Neurônios/fisiologia , Neurônios/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Troponina I/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
15.
J Neuroinflammation ; 21(1): 158, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879567

RESUMO

Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.


Assuntos
Animais Recém-Nascidos , Infecções por Chlamydia , Chlamydia muridarum , Animais , Camundongos , Feminino , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Masculino , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tronco Encefálico/patologia , Doenças Neuroinflamatórias/microbiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
16.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38940832

RESUMO

Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.


Assuntos
Mapeamento Encefálico , Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Tronco Encefálico/fisiologia , Tronco Encefálico/diagnóstico por imagem , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/métodos , Adulto Jovem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Percepção do Tato/fisiologia , Estimulação Física , Mãos/fisiologia
17.
J Oleo Sci ; 73(6): 825-837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825536

RESUMO

Hair is important to our appearance as well as to protect our heads. Human hair mainly consists of proteins (80-85%), melanin pigments (0-5%), water (10-13%), and lipids (1-6%). The physicochemical properties of hair have been studied for over 100 years. However, they are not yet thoroughly understood. In this review, recent progress and the latest findings are summarized from the following three perspectives: structural characteristics, delivery and distribution of active ingredients, and hair as a template. The structural characteristics of hair have been mainly investigated by microscopic and/or spectroscopic techniques such as atomic force microscopy integrated with infrared spectroscopy (AFM-IR) and rheological measurements. The distribution of active ingredients has been generally evaluated through techniques such as nanoscale secondary ion mass spectrometry (NanoSIMS). And finally, attempts to explore the potential of hair to be used as a substrate for flexible device fabrication will be introduced.


Assuntos
Cabelo , Cabelo/química , Humanos , Microscopia de Força Atômica , Melaninas , Fenômenos Químicos , Espectrometria de Massa de Íon Secundário/métodos , Reologia , Espectrofotometria Infravermelho/métodos , Lipídeos/análise , Lipídeos/química , Água , Proteínas/análise
18.
Exp Brain Res ; 242(7): 1773-1786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822824

RESUMO

Sinusoidal galvanic vestibular stimulation (sGVS) induces robust modulation of muscle sympathetic nerve activity (MSNA) alongside perceptions of side-to-side movement, sometimes with an accompanying feeling of nausea. We recently showed that transcranial alternating current stimulation (tACS) of the dorsolateral prefrontal cortex (dlPFC) also modulates MSNA, but does not generate any perceptions. Here, we tested the hypothesis that when the two stimuli are given concurrently, the modulation of MSNA would be additive. MSNA was recorded from 11 awake participants via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve at the fibular head. Sinusoidal stimuli (± 2 mA, 0.08 Hz, 100 cycles) were applied in randomised order as follows: (i) tACS of the dlPFC at electroencephalogram (EEG) site F4 and referenced to the nasion; (ii) bilateral sGVS applied to the vestibular apparatuses via the mastoid processes; and (iii) tACS and sGVS together. Previously obtained data from 12 participants supplemented the data for stimulation protocols (i) and (ii). Cross-correlation analysis revealed that each stimulation protocol caused significant modulation of MSNA (modulation index (paired data): 35.2 ± 19.4% for sGVS; 27.8 ± 15.2% for tACS), but there were no additive effects when tACS and sGVS were delivered concurrently (32.1 ± 18.5%). This implies that the vestibulosympathetic reflexes are attenuated with concurrent dlPFC stimulation. These results suggest that the dlPFC is capable of blocking the processing of vestibular inputs through the brainstem and, hence, the generation of vestibulosympathetic reflexes.


Assuntos
Músculo Esquelético , Sistema Nervoso Simpático , Vestíbulo do Labirinto , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Vestíbulo do Labirinto/fisiologia , Sistema Nervoso Simpático/fisiologia , Músculo Esquelético/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Estimulação Transcraniana por Corrente Contínua , Eletroencefalografia/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Elétrica/métodos
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 960-966, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862454

RESUMO

OBJECTIVE: To assess the effects of repeated mild traumatic brain injury (rmTBI) in the parietal cortex on neuronal morphology and synaptic plasticity in the medulla oblongata of mice. METHODS: Thirty-two male ICR mice were randomly divided into sham operation group (n=8) and rmTBI group (n=24). The mice in the latter group were subjected to repeated mild impact injury of the parietal cortex by a free-falling object. The mice surviving the injuries were evaluated for neurological deficits using neurological severity scores (NSS), righting reflex test and forced swimming test, and pathological changes of the neuronal cells in the medulla oblongata were observed with HE and Nissl staining. Western blotting and immunofluorescence staining were used to detect the expressions of neuroligin 1(NLG-1) and postsynaptic density protein 95(PSD-95) in the medulla oblongata of the mice that either survived rmTBI or not. RESULTS: None of the mice in the sham-operated group died, while the mortality rate was 41.67% in rmTBI group. The mice surviving rmTBI showed significantly reduced NSS, delayed recovery of righting reflex, increased immobility time in forced swimming test (P < 0.05), and loss of Nissl bodies; swelling and necrosis were observed in a large number of neurons in the medulla oblongata, where the expression levels of NLG-1 and PSD-95 were significantly downregulated (P < 0.05). The mice that did not survive rmTBI showed distorted and swelling nerve fibers and decreased density of neurons in the medulla oblongina with lowered expression levels of NLG-1 and PSD-95 compared with the mice surviving the injuries (P < 0.01). CONCLUSION: The structural and functional anomalies of the synapses in the medulla oblongata may contribute to death and neurological impairment following rmTBI in mice.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteína 4 Homóloga a Disks-Large , Bulbo , Camundongos Endogâmicos ICR , Lobo Parietal , Animais , Camundongos , Bulbo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Masculino , Lobo Parietal/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Plasticidade Neuronal
20.
J Am Heart Assoc ; 13(13): e034965, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934856

RESUMO

BACKGROUND: Rostral ventrolateral medulla (RVLM) neuron hyperactivity raises sympathetic outflow, causing hypertension. MicroRNAs (miRNAs) contribute to diverse biological processes, but their influence on RVLM neuronal excitability and blood pressure (BP) remains widely unexplored. METHODS AND RESULTS: The RVLM miRNA profiles in spontaneously hypertensive rats were unveiled using RNA sequencing. Potential effects of these miRNAs in reducing neuronal excitability and BP and underlying mechanisms were investigated through various experiments. Six hundred thirty-seven miRNAs were identified, and reduced levels of miR-193b-3p and miR-346 were observed in the RVLM of spontaneously hypertensive rats. Increased miR-193b-3p and miR-346 expression in RVLM lowered neuronal excitability, sympathetic outflow, and BP in spontaneously hypertensive rats. In contrast, suppressing miR-193b-3p and miR-346 expression in RVLM increased neuronal excitability, sympathetic outflow, and BP in Wistar Kyoto and Sprague-Dawley rats. Cdc42 guanine nucleotide exchange factor (Arhgef9) was recognized as a target of miR-193b-3p. Overexpressing miR-193b-3p caused an evident decrease in Arhgef9 expression, resulting in the inhibition of neuronal apoptosis. By contrast, its downregulation produced the opposite effects. Importantly, the decrease in neuronal excitability, sympathetic outflow, and BP observed in spontaneously hypertensive rats due to miR-193b-3p overexpression was greatly counteracted by Arhgef9 upregulation. CONCLUSIONS: miR-193b-3p and miR-346 are newly identified factors in RVLM that hinder hypertension progression, and the miR-193b-3p/Arhgef9/apoptosis pathway presents a potential mechanism, highlighting the potential of targeting miRNAs for hypertension prevention.


Assuntos
Pressão Sanguínea , Hipertensão , Bulbo , MicroRNAs , Animais , Masculino , Ratos , Apoptose , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Hipertensão/genética , Hipertensão/metabolismo , Bulbo/metabolismo , Bulbo/fisiopatologia , Bulbo/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA