Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
J Chromatogr A ; 1732: 465201, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39079364

RESUMO

Protein A affinity membrane adsorbers are a promising alternative to resins to intensify the manufacturing of monoclonal antibodies. This study examined the process performance of convective diffusive membrane adsorbers operated in batch and continuous multi-column mode. Therefore, three different processes were compared regarding membrane utilization, productivity, and buffer consumption: the batch process, the rapid cycling parallel multi-column chromatography process, and the rapid cycling simulated moving bed process. The influence of the monoclonal antibody loading concentration (between 0.5 g L-1 and 5.2 g L-1) and the loading flow rate (between 1.25 MV min-1 and 10 MV min-1) on the monoclonal antibody binding behavior of the membrane adsorber were studied with breakthrough curve experiments. The determined breakthrough curves were used to calculate the monoclonal antibody dynamic binding capacity, the duration of the loading steps for each process, and the number of required membrane adsorbers for the continuous processes rapid cycling parallel multi-column chromatography and rapid cycling simulated moving bed. The highest productivity for the batch (176 g L-1 h-1) and rapid cycling parallel multi-column chromatography process (176 g L-1 h-1) was calculated for high monoclonal antibody loading concentrations and low loading flow rates. In contrast, the rapid cycling simulated moving bed process achieved the highest productivity (217 g L-1 h-1) for high monoclonal antibody loading concentrations and loading flow rates. Furthermore, due to the higher membrane utilization, the buffer consumption of the rapid cycling simulated moving bed process (1.1 L g-1) was up to 1.9 times lower than that of the batch or rapid cycling parallel multi-column chromatography operation (2.1 L g-1).


Assuntos
Anticorpos Monoclonais , Cromatografia de Afinidade , Membranas Artificiais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/química , Adsorção , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Proteína Estafilocócica A/química , Difusão
2.
Heliyon ; 10(11): e32230, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933948

RESUMO

Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.

3.
J Chromatogr A ; 1729: 465057, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38857565

RESUMO

The histamine H1 receptor (H1R) plays a pivotal role in allergy initiation and undergoes the necessity of devising a high-throughput screening approach centered on H1R to screen novel ligands effectively. This study suggests a method employing styrene maleic acid (SMA) extraction and His-tag covalent bonding to immobilize H1R membrane proteins, minimizing the interference of nonspecific proteins interference while preserving native protein structure and maximizing target exposure. This approach was utilized to develop a novel material for high-throughput ligand screening and implemented in cell membrane chromatography (CMC). An H1R-His-SMALPs/CMC model was established and its chromatographic performance (selectivity, specificity and lifespan) validated, demonstrating a significant enhancement in lifespan compared to previous CMC models. Subsequently, this model facilitated high-throughput screening of H1R ligands in the compound library and preliminary activity verification of potential H1R antagonists. Identification of a novel H1R antagonist laid the foundation for further development in this area.


Assuntos
Ensaios de Triagem em Larga Escala , Maleatos , Receptores Histamínicos H1 , Ligantes , Maleatos/química , Ensaios de Triagem em Larga Escala/métodos , Receptores Histamínicos H1/química , Receptores Histamínicos H1/metabolismo , Humanos , Histidina/química , Animais , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Células CHO , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Antagonistas dos Receptores Histamínicos H1/química , Poliestirenos/química , Cricetulus , Oligopeptídeos/química
4.
J Sep Sci ; 47(11): e2300924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819784

RESUMO

Mas-related G protein-coupled receptor X2 (MrgprX2) is acknowledged as a mast cell-specific receptor, playing a crucial role in orchestrating anaphylactoid responses through mast cell degranulation. It holds promise as a target for regulating allergic and inflammatory diseases mediated by mast cells. Polygonum cuspidatum (PC) has shown notable anti-anaphylactoid effects, while its pharmacologically active components remain unclear. In this study, we successfully utilized MrgprX2 high-expressing cell membrane chromatography (CMC), in conjunction with liquid chromatography-mass spectrometry (LC-MS), to identify active anti-anaphylactoid components in PC. Our study pinpointed polydatin, resveratrol, and emodin-8-O-ß-d-glucoside as potential anti-anaphylactoid compounds in PC. Their anti-anaphylactoid activities were evaluated through ß-aminohexosidase and histamine release assays, demonstrating a concentration-dependent inhibition for both ß-aminohexosidase and histamine release. This approach, integrating MrgprX2 high-expression CMC with LC-MS, proves effective in screening potential anti-anaphylactoid ingredients in natural herbal medicines. The findings from this study illuminated the anti-anaphylactoid properties of specific components in PC and provided an efficient method for the drug development of natural products.


Assuntos
Fallopia japonica , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G/metabolismo , Fallopia japonica/química , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Humanos , Espectrometria de Massas , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Cromatografia Líquida , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos/farmacologia , Glucosídeos/química , Glucosídeos/análise , Estrutura Molecular , Espectrometria de Massa com Cromatografia Líquida
5.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675031

RESUMO

Lysozyme, a common antimicrobial agent, is widely used in the food, biopharmaceutical, chemical, and medicine fields. Rapid and effective isolation of lysozymes is an everlasting topic. In this work, ethylene vinyl alcohol (EVOH) copolymer nanofibrous membranes with a gradient porous structure used for lysozyme adsorption were prepared through layer-by-layer nanofiber wet-laying and a cost-efficient ultraviolet (UV)-assisted graft-modification method, where benzophenone was used as an initiator and 2-acrylamide-2-methylpropanesulfonic acid as a modifying monomer. As indicated in the Fourier Transform Infrared (FTIR) and X-ray photoelectric energy spectrometer (XPS) investigation, sulfonic acid groups were introduced on the surface of the modified nanofibrous membrane, which possessed the ability to adsorb lysozyme. Compared with membranes with homogenous porous structures, membranes with a gradient porous structure present higher static (335 mg/g) and dynamic adsorption capacities (216.3 mg/g). Meanwhile, the adsorption capacity remained high after five cycles of the adsorption-desorption process. The results can be attributed to the gradient porous structure rather than the highest porosity and specific surface area. This suggests that the membrane with comprehensive separation performance can be designed from the view of the transmembrane porous structure, which is of significance for the development of next-generation advanced chromatographic membranes.

6.
J Chromatogr A ; 1721: 464845, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552371

RESUMO

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of malignant tumors occurring in B or T lymphocytes, and no small molecule-positive drugs to treat NHL have been marketed. Cluster of differentiation 20 (CD20) is an important molecule regulating signaling for the life and differentiation of B lymphocytes and possesses the characteristics of a drug target for treating NHL. 2-Methoxyestradiol induces apoptosis in lymphoma Raji cells and CD20 protein is highly expressed by Raji lymphoma cells. Therefore, in this study, a CD20-SNAP-tag/CMC model was developed to validate the interaction of 2-methoxyestradiol with CD20. 2-Methoxyestradiol was used as a small molecule control compound, and the system was validated for good applicability. The cell membrane chromatography model was combined with high-performance liquid chromatography ion trap time-of-flight mass spectroscopy (HPLC-IT-TOF-MS) in a two-dimensional system to successfully identify, analyze, and characterize the potential active compounds of Schisandra chinensis (Turcz.) Baill. extract and Lysionotus pauciflorus Maxim. extract, including Schisandrin A, Schizandrol A, Schizandrol B, Schisantherin B, and Nevadensin, which can act on CD20 receptors. The five potential active compounds were analyzed by non-linear chromatography. The thermodynamic and kinetic parameters of their interaction with CD20 were also analyzed, and the mode of interaction was simulated by molecular docking. Their inhibitory effects on lymphoma cell growth were assessed using a Cell Counting Kit-8 (CCK-8). Nevadensin and Schizandrin A were able to induce apoptosis in Raji cells within a certain concentration range. In conclusion, the present experiments provide some bases for improving NHL treatment and developing small molecule lead compounds targeting CD20 with low toxicity and high specificity.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Humanos , 2-Metoxiestradiol , Células Imobilizadas/química , Cromatografia Líquida de Alta Pressão/métodos , Ciclo-Octanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas , Lignanas/análise , Linfoma/tratamento farmacológico , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Compostos Policíclicos , Schisandra/química
7.
Biotechnol Bioeng ; 121(6): 1859-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470343

RESUMO

Downstream processing is the bottleneck in the continuous manufacturing of monoclonal antibodies (mAbs). To overcome throughput limitations, two different continuous processes with a novel convective diffusive protein A membrane adsorber (MA) were investigated: the rapid cycling parallel multi-column chromatography (RC-PMCC) process and the rapid cycling simulated moving bed (RC-BioSMB) process. First, breakthrough curve experiments were performed to investigate the influence of the flow rate on the mAb dynamic binding capacity and to calculate the duration of the loading steps. In addition, customized control software was developed for an automated MA exchange in case of pressure increase due to membrane fouling to enable robust, uninterrupted, and continuous processing. Both processes were performed for 4 days with 0.61 g L-1 mAb-containing filtrate and process performance, product purity, productivity, and buffer consumption were compared. The mAb was recovered with a yield of approximately 90% and productivities of 1010 g L-1 d-1 (RC-PMCC) and 574 g L-1 d-1 (RC-BioSMB). At the same time, high removal of process-related impurities was achieved with both processes, whereas the buffer consumption was lower for the RC-BioSMB process. Finally, the attainable productivity for perfusion bioreactors of different sizes with suitable MA sizes was calculated to demonstrate the potential to operate both processes on a manufacturing scale with bioreactor volumes of up to 2000 L.


Assuntos
Anticorpos Monoclonais , Cricetulus , Membranas Artificiais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/química , Adsorção , Células CHO , Reatores Biológicos , Proteína Estafilocócica A/química , Animais , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação
8.
J Chromatogr A ; 1718: 464682, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341900

RESUMO

A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.


Assuntos
Saccharomycetales , Anticorpos de Cadeia Única , Pichia/metabolismo , Saccharomycetales/metabolismo , Fermentação , Proteínas Recombinantes/metabolismo
9.
ACS Appl Mater Interfaces ; 16(10): 13234-13246, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411590

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A), which resides on the mitochondrial outer membrane, serves as the rate-limiting enzyme of fatty acid ß-oxidation. Identifying the compounds targeting CPT1A warrants a promising candidate for modulating lipid metabolism. In this study, we developed a CPT1A-overexpressed mitochondrial membrane chromatography (MMC) to screen the compounds with affinity for CPT1A. Cells overexpressing CPT1A were cultured, and subsequently, their mitochondrial membrane was isolated and immobilized on amino-silica gel cross-linked by glutaraldehyde. After packing the mitochondrial membrane column, retention components of MMC were performed with LC/MS, whose analytic peaks provided structural information on compounds that might interact with mitochondrial membrane proteins. With the newly developed MMC-LC/MS approach, several Chinese traditional medicine extracts, such as Scutellariae Radix and Polygoni Cuspidati Rhizoma et Radix (PCRR), were analyzed. Five noteworthy compounds, baicalin, baicalein, wogonoside, wogonin, and resveratrol, were identified as enhancers of CPT1A enzyme activity, with resveratrol being a new agonist for CPT1A. The study suggests that MMC serves as a reliable screening system for efficiently identifying modulators targeting CPT1A from complex extracts.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Resveratrol , Membranas Mitocondriais , Cromatografia
10.
Membranes (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392658

RESUMO

New and highly selective stationary phases for affinity membrane chromatography have the potential to significantly enhance the efficiency and specificity of therapeutic protein purification by reduced mass transfer limitations. This work developed and compared different immobilization strategies for recombinant Protein A ligands to a gold-sputtered polymer membrane for antibody separation in terms of functionalization and immobilization success, protein load, and stability. Successful, functionalization was validated via X-ray photoelectron spectroscopy (XPS). Here, a recombinant Protein A ligand was coupled by N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) chemistry to carboxy-functionalized, gold-sputtered membranes. We achieved a binding capacity of up to 104 ± 17 mg of the protein ligand per gram of the gold-sputtered membrane. The developed membranes were able to successfully capture and release the monoclonal antibody (mAb) Trastuzumab, as well as antibodies from fresh frozen human blood plasma in both static and dynamic setups. Therefore, they demonstrated successful functionalization and immobilization strategies. The antibody load was tested using bicinchoninic acid (BCA), ultraviolet-visible spectroscopy (UV-vis) measurements, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The outcome is a fully functional affinity membrane that can be implemented in a variety of different antibody purification processes, eliminating the need for creating individualized strategies for modifying the surface to suit different substrates or conditions.

11.
Anal Bioanal Chem ; 416(6): 1457-1468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231254

RESUMO

Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.


Assuntos
Evodia , Neoplasias Gastrointestinais , Humanos , Mesilato de Imatinib/farmacologia , Evodia/química , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes , Receptores Proteína Tirosina Quinases , Neoplasias Gastrointestinais/tratamento farmacológico , Membrana Celular
12.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256226

RESUMO

Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.


Assuntos
Gota , Indóis , Plantago , Polímeros , Humanos , Sílica Gel , Dióxido de Silício , Membrana Celular , Proteínas de Membrana , Rim , Cromatografia , Excipientes
13.
Biotechnol Bioeng ; 121(2): 719-734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942560

RESUMO

Recombinant adeno-associated viral vectors (rAAVs) have become an industry-standard technology in the field of gene therapy, but there are still challenges to be addressed in their biomanufacturing. One of the biggest challenges is the removal of capsid species other than that which contains the gene of interest. In this work, we develop a mechanistic model for the removal of empty capsids-those that contain no genetic material-and enrichment of full rAAV using anion-exchange membrane chromatography. The mechanistic model was calibrated using linear gradient experiments, resulting in good agreement with the experimental data. The model was then applied to optimize the purification process through maximization of yield studying the impact of mobile phase salt concentration and pH, isocratic wash and elution length, flow rate, percent full (purity) requirement, loading density (challenge), and the use of single-step or two-step elution modes. A solution from the optimization with purity of 90% and recovery yield of 84% was selected and successfully validated, as the model could predict the recovery yield with remarkable fidelity and was able to find process conditions that led to significant enrichment. This is, to the best of our knowledge, the first case study of the application of de novo mechanistic modeling for the enrichment of full capsids in rAAV manufacturing, and it serves as demonstration of the potential of mechanistic modeling in rAAV process development.


Assuntos
Dependovirus , Vetores Genéticos , Cromatografia por Troca Iônica/métodos , Dependovirus/genética , Terapia Genética , Capsídeo/química
14.
J Chromatogr A ; 1714: 464549, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38056392

RESUMO

Immobilized artificial membrane chromatography (IAM) has been proposed as a more biosimilar alternative to classical lipophilicity measurement. Determination of small molecule's affinity to phospholipids can be supported for predicting their behavior in the human body. Therefore, a better understanding of the molecular interaction mechanism between small xenobiotics and phospholipids can accelerate drug discovery. Here, the quantitative structure-retention relationships (QSRR) approach was integrated with mechanistic descriptors calculated using Chemicalize software to propose an easy-to-interpretation QSRR model. Considering the heterogeneous character of the data set, locally weighted least squares kernel regression belonging to similarity-based machine learning methods have been applied. The results showed that lipophilicity, charge, and maximum projection area determine molecule binding to phospholipids. Full validation of the obtained model based on OECD recommendations has been performed and the applicability domain was defined using the probability-oriented distance-based approach. The high values of predictive squared correlation coefficient (Q2), and small root mean square error of prediction (RMSEP), 0.812 and 6.739, respectively, confirmed that the obtained QSRR model is not well-fitted to the training data but also showed prediction power. Additionally, only 1.5% of molecules from the training set and 2.8% from the validation test are outside the applicability domain, confirming great predictive abilities.


Assuntos
Algoritmos , Fosfolipídeos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Fosfolipídeos/química , Análise dos Mínimos Quadrados , Software , Relação Quantitativa Estrutura-Atividade
15.
J Pharm Biomed Anal ; 238: 115816, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37976988

RESUMO

The SNAP-tag-epidermal growth factor receptor (SNAP-tag-EGFR) cell membrane chromatography (CMC) model is a powerful tool for investigating ligand-receptor interactions and screening active ingredients in traditional Chinese medicine. Most tyrosine kinase inhibitors (TKIs) target epidermal growth factor receptors. However, TKIs associated with significant side effects and drug resistance must be addressed immediately. Therefore, there is an urgent need to develop new TKIs with high efficiency and low toxicity. Because of its low toxicity and side effects, traditional Chinese medicine has been widely employed to treat various diseases, including cancer. Hence, this study aimed to use the SNAP-tag-EGFR/CMC-high-performance liquid chromatography-mass spectrometry (HPLC-MS) two-dimensional system model as the research tool to screen and identify potential EGFR antagonists from the Chinese medicine Silybum marianum (L.) Gaertn. The applicability of the system was verified using the positive control drug osimertinib. Four potential EGFR antagonists were screened from the Chinese medicine Silybum marianum (L.) Gaertn.. They were identified as silydianin, silychristin, silybin, and isosilybin. Additionally, their pharmacological activity was preliminarily verified using a CCK-8 assay. The kinetic parameters of the four active ingredients interacting with EGFR and their binding modes with EGFR were analyzed using nonlinear chromatography (NLC) and molecular docking. This study identified silydianin, silychristin, silybin, and isosilybin from Silybum marianum (L.) Gaertn. and verified their potential antitumor effects on EGFR.


Assuntos
Silybum marianum , Silimarina , Silibina , Simulação de Acoplamento Molecular , Membrana Celular/química , Receptores ErbB , Cromatografia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38154412

RESUMO

Protein A chromatography remains the crucial step in mAb purification because of the high binding specificity and impurity clearance. In recent years, highly productive membrane adsorbers emerged as an alternative to traditional resins allowing for rapid purification of biomolecules. In this study, we tested three commercially available protein A membranes (Sartobind® Rapid A, HiTrap Fibro™ PrismA and GORE™ Protein Capture Device) regarding flow distribution, permeability and binding performance. As an application study using a cell-culture supernatant (CCS) containing monoclonal antibodies (mAbs), acidic and high pH wash steps were investigated regarding recovery and impurity removal. All membranes proved their applicability as highly productive capture media leading to high HCP and DNA removal with no observable influence on recovery. GORE™ Protein Capture Device exhibited a superior flow distribution but revealed diffusional limitations at high flow rates. Sartobind® Rapid A and HiTrap Fibro™ PrismA showed binding capacities of âˆ¼ 40 g/L even at residence times (RTs) < 12 s but were limited by hydrodynamics suggesting room for improvement with optimized membrane housing.


Assuntos
Cromatografia , Proteína Estafilocócica A , Animais , Cricetinae , Anticorpos Monoclonais/química , Cinética , Cromatografia de Afinidade/métodos , Cricetulus , Células CHO
17.
Membranes (Basel) ; 13(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132900

RESUMO

Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods.

18.
Membranes (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887987

RESUMO

Improved upstream titres in therapeutic monoclonal antibody (mAb) production have shifted capacity constraints to the downstream process. The consideration of membrane-based chromatographic devices as a debottlenecking option is gaining increasing attention with the recent introduction of high-capacity bind and elute membranes. We have evaluated the performance and scalability of the Sartobind® Rapid A affinity membrane (1 mL) for high-productivity mAb capture. For scalability assessment, a 75 mL prototype device was used to process 100 L of clarified cell culture harvest (CH) on a novel multi-use rapid cycling chromatography system (MU-RCC). MabSelect™ PrismA (4.7 mL) was used as a benchmark comparator for Protein A (ProtA) resin studies. Results show that in addition to a productivity gain of >10×, process and product quality attributes were either improved or comparable to the benchmark. Concentrations of eluate pools were 7.5× less than that of the benchmark, with the comparatively higher bulk volume likely to cause handling challenges at process scale. The MU-RCC system is capable of membrane operation at pilot scale with comparable product quality profile to the 1 mL device. The Sartobind® Rapid A membrane is a scalable alternative to conventional ProtA resin chromatography for the isolation and purification of mAbs from harvested cell culture media.

19.
Membranes (Basel) ; 13(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37887996

RESUMO

Protein A chromatography is the preferred unit operation for purifying Fc-based proteins. Convective chromatography technologies, like membrane adsorbers, can perform the purification rapidly and improve throughput dramatically. While the literature reports the preparation of Protein A membrane adsorbers utilizing traditional coupling chemistries that target lysine or thiol groups on the Protein A ligand, this study demonstrates a new approach utilizing copper-free dibenzocyclooctyne (DBCO)-azide click chemistry. The synthetic pathway consists of three main steps: bioconjugation of Protein A with a DBCO-polyethylene glycol (PEG) linker, preparation of an azide-functionalized membrane surface, and click reaction of DBCO-Protein A onto the membrane surface. Using polyclonal human immunoglobulins (hIgG) as the target molecule, Protein A membranes prepared by this synthetic pathway showed a flowrate-independent dynamic binding capacity of ~10 mg/mL membrane at 10% breakthrough. Fitting of static binding capacity measurements to the Langmuir adsorption isotherm showed a maximum binding (qmax) of 27.48 ± 1.31 mg/mL and an apparent equilibrium dissociation constant (Kd) of value of 1.72 × 10-1 ± 4.03 × 10-2 mg/mL. This work represents a new application for copper-less click chemistry in the membrane chromatography space and outlines a synthetic pathway that can be followed for immobilization of other ligands.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37844406

RESUMO

Magnolol and honokiol have been reported to exhibit anti-cancer activity. However, few studies are in relation to the interaction of magnolol/honokiol with vascular endothelial growth factor 2 (VEGFR2). In this study, a membrane chromatography method based on VEGFR2 was established for the interaction characteristic analysis between drug and receptor. The selectivity, repeatability and stability of the chromatographic model were evaluated using drugs acting on different receptors. The affinity between VEGFR2 and magnolol/honokiol was verified by cell membrane chromatography. The binding sites of magnolol/honokiol and VEGFR2 were analyzed by zonal elution. Especially, the dissociation equilibrium constants (Kd) of magnolol/honokiol and VEGFR2 were measured by zonal elution and stepwise frontal analysis respectively. In addition, the actions of magnolol/honokiol on VEGFR2 were analyzed by stepwise frontal analysis at different temperatures. The results showed that the binding sites of magnolol and honokiol on VEGFR2 were different from sorafenib, indicating that magnolol and honokiol could be used as competitive agents for self-competitive displacement experiment. The Kd values (order of magnitude) of magnolol/honokiol with VEGFR2 measured by stepwise frontal analysis were consistent with the zonal elution results. Honokiol binds VEGFR2 with higher affinity than magnolol. The main forces that stabilize the interactions of honokiol with VEGFR2 are hydrogen bonds and van der Waal's forces, and the main force of magnolol is electrostatic forces. These discoveries could assist in the prediction of drug activity and understanding for the underlying mechanism.


Assuntos
Lignanas , Fator A de Crescimento do Endotélio Vascular , Compostos de Bifenilo/química , Cromatografia , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA