Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(19): 8587-8596, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683942

RESUMO

Water scarcity has driven the demand for water production from unconventional sources and the reuse of industrial wastewater. Pressure-driven membranes, notably thin-film composite (TFC) membranes, stand as energy-efficient alternatives to the water scarcity challenge and various wastewater treatments. While pressure drives solvent movement, it concurrently triggers membrane compaction and flux deterioration. This necessitates a profound comprehension of the intricate interplay among compressive modulus, structural properties, and transport efficacy amid the compaction process. In this study, we present an all-encompassing compaction model for TFC membranes, applying authentic structural and mechanical variables, achieved by coupling viscoelasticity with Monte Carlo flux calculations based on the resistance-in-series model. Through validation against experimental data for multiple commercial membranes, we evaluated the influence of diverse physical parameters. We find that support polymers with a higher compressive modulus (lower compliance), supports with higher densities of "finger-like" pores, and "sponge-like" pores with optimum void fractions will be preferred to mitigate compaction. More importantly, we uncover a trade-off correlation between steady-state permeability and the modulus for identical support polymers displaying varying porosities. This model holds the potential as a valuable guide in shaping the design and optimization for further TFC applications and extending its utility to biological scaffolds and hydrogels with thin-film coatings in tissue engineering.


Assuntos
Membranas Artificiais , Porosidade , Permeabilidade , Polímeros/química
2.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015511

RESUMO

Applications of ultra-low-pressure filtration systems are increasing as they offer enhanced sustainability due to lower energy input, almost no use of chemicals, and minimum operational expenditure. In many cases, they operate as a decentralized system using a gravity-driven membrane (GDM) filtration process. These applications are relatively new; hence, the fundamental knowledge of the process is still limited. In this study, we investigated the phenomenon of polymeric membrane compaction under an ultra-low-pressure system. The compaction phenomenon is well-recognized in the traditional pressure-driven system operating at high transmembrane pressures (ΔPs > 200 kPa), but it is less documented in ultra-low-pressure systems (ΔP < 10 kPa). A simple GDM filtration setup operated under a constant-pressure system was employed to investigate the compaction phenomena in a polymeric hollow fiber membrane for clean water filtration. Firstly, a short-term pressure stepping test was performed to investigate the occurrence of instantaneous compaction in the ΔP range of 1−10 kPa. The slow compaction was later investigated. Finally, the compaction dynamic was assessed under alternating high and low ΔP and relaxation in between the filtrations. The findings demonstrated the prominence of membrane compaction, as shown by the decreasing trend in clean water permeability at higher ΔPs (i.e., 3240 and 2401 L m−2 h−1 bar−1 at ΔPs of 1 and 10 kPa, respectively). We also found that the intrinsic permeability of the applied polymeric membrane was significantly higher than the apparent one (4351 vs. 2401 L m−2 h−1 bar−1), demonstrating >50% loss due to compaction. The compaction was mainly instantaneous, which occurred when the ΔP was changed, whereas only minor changes in permeability occurred over time when operating at a constant ΔP. The compaction was highly reversible and could be restored (i.e., decompaction) through relaxation by temporarily stopping the filtration. A small fraction of irreversible compaction could be detected by operating alternating filtrations under ΔPs of 1 and 10 kPa. The overall findings are essential to support emerging GDM filtration applications, in which membrane compaction has been ignored and confounded with membrane fouling. The role of compaction is more prominent for high-flux GDM filtration systems treating less-fouling-prone feed (i.e., rainwater, river water) and involving membrane cleaning (i.e., relaxation) in which both reversible and irreversible compaction occurred simultaneously.

3.
Membranes (Basel) ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36005707

RESUMO

The shortage of fresh water resources has made the desalination of seawater a widely adopted technology. Seawater reverse osmosis (SWRO) is the most commonly used method for desalination. The SWRO process is energy-intensive, and most of the energy in SWRO is spent on pressurizing the seawater to overcome the osmotic barrier for producing fresh water. The pressure needed depends on the salinity of the seawater, its temperature, and the membrane surface properties. Membrane compaction occurs in SWRO due to hydraulic pressure application for long-term operations and operating temperature fluctuations due to seasonal seawater changes. This study investigates the effects of short-term feed water temperature increase on the SWRO process in a full-scale pilot with pretreatment and a SWRO installation consisting of a pressure vessel which contains seven industrial-scale 8" diameter spiral wound membrane elements. A SWRO feed water temperature of 40 °C, even for a short period of 7 days, caused a permanent performance decline illustrated by a strong specific energy consumption increase of 7.5%. This study highlights the need for membrane manufacturer data that account for the water temperature effect on membrane performance over a broad temperature range. There is a need to develop new membranes that are more tolerant to temperature fluctuations.

4.
Polymers (Basel) ; 14(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631955

RESUMO

Ultra-low-pressure membrane (ULPM) filtration has emerged as a promising decentralized water and wastewater treatment method. It has been proven effective in long-term filtration under stable flux without requiring physical or chemical cleaning, despite operating at considerably lower flux. The use of ultra-low pressure, often simply by hydrostatic force (often called gravity-driven membrane (GDM) filtration), makes it fall into the uncharted territory of common pressure-driven membrane filtration. The applied polymeric membrane is sensitive to compaction, wetting, and fouling. This paper reviews recent studies on membrane compaction, wetting, and fouling. The scope of this review includes studies on those phenomena in the ULPM and how they affect the overall performance of the system. The performance of GDM systems for water and wastewater treatment is also evaluated. Finally, perspectives on the future research direction of ULPM filtration are also detailed.

5.
Membranes (Basel) ; 10(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182655

RESUMO

Amine-containing mixed-matrix membranes incorporated with amino-functionalized multi-walled carbon nanotubes (AF-MWNTs) were synthesized for CO2/H2 separation based on the facilitated transport mechanism. AF-MWNTs were chosen primarily as the mechanical reinforcing filler to enhance the membrane stability. At 107 °C and 0.2-MPa feed pressure, the membrane incorporated with 10 wt.% AF-MWNTs showed a CO2 permeability of 3196 Barrers and a CO2/H2 selectivity of 205. At the higher feed pressure of 1.5 MPa, owing to the carrier saturation phenomenon, the same membrane exhibited reduced transport performance with a CO2 permeability of 776 Barrers and a CO2/H2 selectivity of 31. These separation performances at both the low and high feed pressures were well above the theoretical upper bound. Furthermore, the incorporation of 10 wt.% AF-MWNTs led to a significant improvement on membrane stability. The transport performance and selective layer thickness of this membrane maintained for 100 h, which suggested that the incorporation of AF-MWNTs improved the resistance to membrane compaction upon a high feed pressure. Therefore, this work is considered as one of the crucial steps to enable the application of facilitated transport membranes to high-pressure gas processing such as syngas purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA