Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(25): e2300856, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932891

RESUMO

CO2 electrolysis is a promising route for achieving net-zero emission through decarbonization. To realize CO2 electrolysis toward practical application, beyond catalyst structures, it is also critical to rationally manipulate catalyst microenvironments such as the water at the electrode/electrolyte interface. Here, the role of interfacial water in CO2 electrolysis over Ni-N-C catalyst modified with different polymers is investigated. Benefiting from a hydrophilic electrode/electrolyte interface, the Ni-N-C catalyst modified with quaternary ammonia poly(N-methyl-piperidine-co-p-terphenyl) shows a Faradaic efficiency of 95% and a partial current density of 665 mA cm-2 for CO production in an alkaline membrane electrode assembly electrolyzer. A scale-up demonstration using a 100 cm2 electrolyzer achieves a CO production rate of 514 mL min-1 at a current of 80 A. In-situ microscopy and spectroscopy measurements indicate that the hydrophilic interface significantly promotes the formation of the *COOH intermediate, rationalizing the high CO2 electrolysis performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA