Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Brain Res ; 1809: 148341, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001722

RESUMO

Rabbits have remarkable nursing behavior: after parturition, does visit daily their pups for nursing only once with circadian periodicity. Before the nursing events, they present increased activity and arousal, which shift according to the timing of scheduled nursing, either during the day or night. Brain areas related to maternal behavior and neuroendocrine cells for milk secretion are also entrained. The daily return of the doe for nursing at approximately the same hour suggests a motivational drive with circadian periodicity. Previously, we reported the activation of the mesolimbic system at the time of nursing, but not 12 h before that. Aiming at a better understanding of the mechanism of this anticipatory behavior, we explored the participation of the limbic regions of the amygdala and the bed nucleus of the stria terminalis, as well as the possible activation of the hypothalamic-pituitaryadrenal axis, specifically the corticotropin-releasing factor cells in the hypothalamic paraventricular nucleus of does at different times before and after nursing. The medial and cortical amygdala, the bed nucleus of the stria terminalis, and corticotropin cells showed activation only after nursing. However, the central amygdala was also activated before nursing. We conclude that the medial and the cortical amygdala form part of the afferent olfactory pathway for entrainment, and the central amygdala participates in the anticipatory motivational circuit of the control of periodic nursing. The lack of activation of corticotropin cells before nursing is consistent with the possible harmful effects of the doe's high glucocorticoid levels on the developing pups.


Assuntos
Hipotálamo , Córtex Olfatório , Animais , Feminino , Coelhos , Hipotálamo/metabolismo , Tonsila do Cerebelo/metabolismo , Periodicidade , Córtex Olfatório/metabolismo , Hormônio Adrenocorticotrópico/metabolismo
2.
Psychopharmacology (Berl) ; 240(4): 797-812, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745226

RESUMO

RATIONALE: Drug and natural rewarding stimuli activate the mesolimbic dopaminergic system. Both methamphetamine (Meth) and copulation to satiety importantly increase dopamine (DA) release in the nucleus accumbens (NAc), but with differences in magnitude. This paper analyzes the interaction between Meth administration and the intense sexual activity associated with sexual satiety. OBJECTIVES: To evaluate possible changes in Meth-induced behavioral effects and striatal DA-related protein expression due to sexual satiety. METHODS: Meth-induced locomotor activity and conditioned place preference (CPP) were tested in sexually experienced male rats that copulated to satiety (S-S) or ejaculated once (1E) the day before or displayed no sexual activity (control group; C). DA receptors and DA transporter expression were determined by western blot in the striatum of animals of all sexual conditions treated with specific Meth doses. RESULTS: Meth's locomotor and rewarding effects were exacerbated in S-S animals, while in 1E rats, only locomotor effects were enhanced. Sexual activity, by itself, modified DA-related protein expression in the NAc core and in the caudate-putamen (CPu), while Meth treatment alone changed their expression only in the NAc shell. Meth-induced changes in the NAc shell turned in the opposite direction when animals had sexual activity, and additional changes appeared in the NAc core and CPu of S-S rats. CONCLUSION: Sexual satiety sensitizes rats to Meth's behavioral effects and the Meth-induced striatal DA-related protein adaptations are modified by sexual activity, evidencing cross-sensitization between both stimuli.


Assuntos
Metanfetamina , Ratos , Masculino , Animais , Dopamina/metabolismo , Núcleo Accumbens , Corpo Estriado , Neostriado/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834747

RESUMO

Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Consumo de Bebidas Alcoólicas , Metilação de DNA , Etanol , Fator 2 de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
4.
Curr Biol ; 33(1): 147-157.e7, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36450285

RESUMO

Feeding behaviors depend on intrinsic and extrinsic factors including genetics, food palatability, and the environment.1,2,3,4,5 The gut microbiota is a major environmental contributor to host physiology and impacts feeding behavior.6,7,8,9,10,11,12 Here, we explored the hypothesis that gut bacteria influence behavioral responses to palatable foods and reveal that antibiotic depletion (ABX) of the gut microbiota in mice results in overconsumption of several palatable foods with conserved effects on feeding dynamics. Gut microbiota restoration via fecal transplant into ABX mice is sufficient to rescue overconsumption of high-sucrose pellets. Operant conditioning tests found that ABX mice exhibit intensified motivation to pursue high-sucrose rewards. Accordingly, neuronal activity in mesolimbic brain regions, which have been linked with motivation and reward-seeking behavior,3 was elevated in ABX mice after consumption of high-sucrose pellets. Differential antibiotic treatment and functional microbiota transplants identified specific gut bacterial taxa from the family S24-7 and the genus Lactobacillus whose abundances associate with suppression of high-sucrose pellet consumption. Indeed, colonization of mice with S24-7 and Lactobacillus johnsonii was sufficient to reduce overconsumption of high-sucrose pellets in an antibiotic-induced model of binge eating. These results demonstrate that extrinsic influences from the gut microbiota can suppress the behavioral response toward palatable foods in mice.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Comportamento Alimentar/fisiologia , Alimentos , Sacarose , Antibacterianos/farmacologia
5.
Psychopharmacology (Berl) ; 239(11): 3679-3695, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192550

RESUMO

RATIONALE: Exposure of male rats to an inaccessible receptive female and copulation increases dopamine (DA) levels in the nucleus accumbens (NAcc). Males copulating to satiety become sexually inhibited and most of them do not display sexual activity when presented with a sexually receptive female 24 h later. This inhibitory state can be pharmacologically reversed. There are no studies exploring NAcc DA levels during this sexual inhibitory state. OBJECTIVES: To characterize changes in NAcc DA and its metabolites' levels during sexual satiety development, during the well-established sexual inhibitory state 24 h later, and during its pharmacological reversal. METHODS: Changes in NAcc DA and its metabolites were measured in sexually experienced male rats, using in vivo microdialysis, during copulation to satiety, when presented to a new sexually receptive female 24 h later, and during the pharmacological reversal of the sexual inhibition by anandamide. RESULTS: NAcc DA levels remained increased during copulation to satiety. DA basal levels were significantly reduced 24 h after copulation to satiety, as compared to the initial basal levels. Presenting a receptive female behind a barrier 24 h after satiety did not induce the typical NAcc DA elevation in the sexually satiated males but there was a decrease that persisted when they got access to the female, with which they did not copulate. Anandamide injection slightly increased NAcc DA levels coinciding with sexual satiety reversal. CONCLUSIONS: Reduced NAcc DA concentrations coincide with the inhibition of an instinctive, natural rewarding behavior suggesting that there might be a DA concentration threshold needed to be responsive to a rewarding stimulus.


Assuntos
Dopamina , Núcleo Accumbens , Ratos , Masculino , Feminino , Animais , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Comportamento Sexual Animal/fisiologia , Endocanabinoides/metabolismo
6.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171057

RESUMO

Despite increased prevalence of maternal cannabis use, little is understood regarding potential long-term effects of prenatal cannabis exposure (PCE) on neurodevelopmental outcomes. While neurodevelopmental cannabis exposure increases the risk of developing affective/mood disorders in adulthood, the precise neuropathophysiological mechanisms in male and female offspring are largely unknown. Given the interconnectivity of the endocannabinoid (ECb) system and the brain's fatty acid pathways, we hypothesized that prenatal exposure to Δ9-tetrahydrocannabinol (THC) may dysregulate fetal neurodevelopment through alterations of fatty-acid dependent synaptic and neuronal function in the mesolimbic system. To investigate this, pregnant Wistar rats were exposed to vehicle or THC (3 mg/kg) from gestational day (GD)7 until GD22. Anxiety-like, depressive-like, and reward-seeking behavior, electrophysiology, and molecular assays were performed on adult male/female offspring. Imaging of fatty acids using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was performed at prepubescence and adulthood. We report that PCE induces behavioral, neuronal, and molecular alterations in the mesolimbic system in male and female offspring, resembling neuropsychiatric endophenotypes. Additionally, PCE resulted in profound dysregulation of critical fatty acid pathways in the developing brain lipidome. Female progeny exhibited significant alterations to fatty acid levels at prepubescence but recovered from these deficits by early adulthood. In contrast, males exhibited persistent fatty acid deficits into adulthood. Moreover, both sexes maintained enduring abnormalities in glutamatergic/GABAergic function in the nucleus accumbens (NAc). These findings identify several novel long-term risks of maternal cannabis use and demonstrate for the first time, sex-related effects of maternal cannabinoid exposure directly in the developing neural lipidome.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Animais , Agonistas de Receptores de Canabinoides , Dronabinol/toxicidade , Endocanabinoides , Endofenótipos , Ácidos Graxos , Feminino , Humanos , Masculino , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais
7.
J Neurosci ; 42(33): 6424-6434, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35790398

RESUMO

Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systems, both during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" postencoding brain mechanisms that support long-term associative memory from childhood to adulthood in human participants of both sexes. We found that reward motivation led to both age-invariant enhancements and nonlinear age-related differences in associative memory after 24 h. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex (PFC) and ventral tegmental area (VTA) were associated with better high-reward memory to a greater degree with increasing age. Preencoding to postencoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental differences in the contributions of offline subcortical and online cortical brain mechanisms supporting reward-motivated memory.SIGNIFICANCE STATEMENT A substantial body of research has examined the neural mechanisms through which reward influences memory formation in adults. However, despite extensive evidence that both reward processing and associative memory undergo dynamic change across development, few studies have examined age-related changes in these processes. We found both age-invariant and nonlinear age-related differences in reward-motivated memory. Moreover, our findings point to developmental differences in the processes through which reward modulates the prioritization of information in long-term memory, with greater early reliance on offline subcortical consolidation mechanisms and increased contribution of systems-level online encoding circuitry with increasing age. These results highlight dynamic developmental changes in the cognitive and neural mechanisms through which motivationally salient information is prioritized in memory from childhood to adulthood.


Assuntos
Recompensa , Área Tegmentar Ventral , Adolescente , Adulto , Mapeamento Encefálico , Criança , Feminino , Hipocampo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Motivação , Área Tegmentar Ventral/diagnóstico por imagem , Adulto Jovem
8.
Adv Exp Med Biol ; 1344: 57-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34773226

RESUMO

Rhythmic gene expression is found throughout the central nervous system. This harmonized regulation can be dependent on- and independent of- the master regulator of biological clocks, the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain's reward system is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms in the SCN and the brain's reward system. In this chapter, we will discuss the influence of the dopaminergic reward pathways on circadian system and the implication of this interplay on human health.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Relógios Biológicos , Dopamina , Humanos , Recompensa
9.
Biomedicines ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440081

RESUMO

Impaired social behavior is a common feature of many psychiatric disorders, in particular with substance abuse disorders. Switching the preference of the substance-dependent individual toward social interaction activities remains one of the major challenges in drug dependence therapy. However, social interactions yield to the emergence of social ranking. In this review, we provide an overview of the studies that examined how social status can influence the dopaminergic mesolimbic system and how drug-seeking behavior is affected. Generally, social dominance is associated with an increase in dopamine D2/3 receptor binding in the striatum and a reduced behavioral response to drugs of abuse. However, it is not clear whether higher D2 receptor availability is a result of increased D2 receptor density and/or reduced dopamine release in the striatum. Here, we discuss the possibility of a potential shift from down to top rank via manipulation of the mesolimbic system. Identifying the neurobiology underlying a potential rank switch to a resilient phenotype is of particular interest in order to promote a positive coping behavior toward long-term abstinence from drugs of abuse and a protection against relapse to drugs. Such a shift may contribute to a more successful therapeutic approach to cocaine addiction.

10.
Neurobiol Dis ; 156: 105404, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044146

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established therapeutic principle in Parkinson's disease, but the underlying mechanisms, particularly mediating non-motor actions, remain largely enigmatic. OBJECTIVE/HYPOTHESIS: The delayed onset of neuropsychiatric actions in conjunction with first experimental evidence that STN-DBS causes disease-modifying effects prompted our investigation on how cellular plasticity in midbrain dopaminergic systems is affected by STN-DBS. METHODS: We applied unilateral or bilateral STN-DBS in two independent cohorts of 6-hydroxydopamine hemiparkinsonian rats four to eight weeks after dopaminergic lesioning to allow for the development of a stable dopaminergic dysfunction prior to DBS electrode implantation. RESULTS: After 5 weeks of STN-DBS, stimulated animals had significantly more TH+ dopaminergic neurons and fibres in both the nigrostriatal and the mesolimbic systems compared to sham controls with large effect sizes of gHedges = 1.9-3.4. DBS of the entopeduncular nucleus as the homologue of the human Globus pallidus internus did not alter the dopaminergic systems. STN-DBS effects on mesolimbic dopaminergic neurons were largely confirmed in an independent animal cohort with unilateral STN stimulation for 6 weeks or for 3 weeks followed by a 3 weeks washout period. The latter subgroup even demonstrated persistent mesolimbic dopaminergic plasticity after washout. Pilot behavioural testing showed that augmentative dopaminergic effects on the mesolimbic system by STN-DBS might translate into improvement of sensorimotor neglect. CONCLUSIONS: Our data support sustained neurorestorative effects of STN-DBS not only in the nigrostriatal but also in the mesolimbic system as a potential factor mediating long-latency neuropsychiatric effects of STN-DBS in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda/métodos , Neurônios Dopaminérgicos/metabolismo , Sistema Límbico/metabolismo , Transtornos Parkinsonianos/metabolismo , Núcleo Subtalâmico/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Corpo Estriado/metabolismo , Feminino , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/terapia , Ratos , Ratos Wistar , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
11.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33906970

RESUMO

Glutamatergic input via NMDA and AMPA receptors within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior and relapse toward drugs of abuse. Although well-established for drugs of abuse, it is not clear whether glutamate receptors within the mesolimbic system are involved in mediating chronic consumption and relapse following abstinence from a non-drug reward. Here, we evaluated the contribution of mesolimbic glutamate receptors in mediating chronic sugar consumption and the sugar-deprivation effect (SDE), which is used as a measure of relapse-like behavior following abstinence. We studied four inducible mutant mouse lines lacking the GluA1 or GluN1 subunit in either DA transporter (DAT) or D1R-expressing neurons in an automated monitoring system for free-choice sugar drinking in the home cage. Mice lacking either GluA1 or GluN1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2 mice) have altered sugar consumption in both sexes, whereas GluA1DATCreERT2 and GluN1DATCreERT2 do not differ from their respective littermate controls. In terms of relapse-like behavior, female GluN1D1CreERT2 mice show a more pronounced SDE. Given that glutamate receptors within the mesolimbic system play a critical role in mediating relapse behavior of alcohol and other drugs of abuse, it is surprising that these receptors do not mediate the SDE, or in the case of female GluN1D1CreERT2 mice, show an opposing effect. We conclude that a relapse-like phenotype of sugar consumption differs from that of drugs of abuse on the molecular level, at least with respect to the contribution of mesolimbic glutamate receptors.


Assuntos
Receptores de N-Metil-D-Aspartato , Açúcares , Animais , Açúcares da Dieta , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Recidiva
12.
Brain Struct Funct ; 226(4): 1099-1114, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33580321

RESUMO

Sex differences in the neural processing of decision-making are of high interest as they may have pronounced effects on reward- and addiction-related processes. In these, the neurotransmitter dopamine plays a central role by modulating the responsiveness of the reward circuitry. The present functional magnetic resonance imaging study aimed to explore sex and dopamine transmission interactions in decision-making. 172 subjects (111 women) performed a behavioral self-control task assessing reward-related activation during acceptance and rejection of conditioned rewards. Participants were genotyped for six key genetic polymorphisms in the dopamine system that have previously been associated with individual differences in reward sensitivity or dopaminergic transmission in the human striatum, such as rs7118900 (dopamine receptor D2 (DRD2) Taq1A), rs1554929 (DRD2 C957T), rs907094 (DARPP-32), rs12364283 (DRD2), rs6278 (DRD2), and rs107656 (DRD2). The selected polymorphisms were combined in a so-called multilocus genetic composite (MGC) score reflecting the additive effect of different alleles conferring relative increased dopamine transmission in every individual. We successfully demonstrated that reward-related activation in the ventral striatum and ventral tegmental area (VTA) was significantly modulated by biologically informed MGC profiles and sex. When comparing men and women with low MGC profiles that may indicate lower dopamine transmission, only women displayed a reduced down-regulation of activation in the mesolimbic system during reward rejection and additionally, a significant non-linear u-shape relationship between MGC score and VTA activation. Taken together, by integrating neuroimaging and genetics, the present findings contribute to a better understanding of the effects of sex differences on the human brain.


Assuntos
Recompensa , Dopamina , Feminino , Perfil Genético , Humanos , Masculino , Caracteres Sexuais , Estriado Ventral
13.
Mol Biol Rep ; 47(12): 9689-9697, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170427

RESUMO

Orexins-A (OrxA) and -B (OrxB) neuropeptides are synthesized by a group of neurons located in the lateral hypothalamus and adjacent perifornical area, which send their projections to the mesolimbic dopaminergic (DAergic) system including ventral tegmental area and nucleus accumbens (NAc), where orexin receptors are expressed. NAc plays a central role in reward-seeking behavior and drug abuse. NAc-neurons express dopamine-1 (D1R) and dopamine-2 (D2R) receptors. Orexins bind to their two cognate G-protein-coupled receptors, orexin-receptor type-1 (Orx1R) and type-2 (Orx2R). Orexin receptor signaling is involved in behaviors such as motivation and addiction. Orexin-containing neurons modulate DAergic activity that is key in synaptic plasticity induced by addictive drugs. However, the effect of OrxA on expression and content of DAergic receptors in NAc is unknown. The purpose of this study was to investigate whether OrxA can alter gene expression and protein levels of D1R/D2R in NAc. Gene expression was evaluated by real-time PCR analysis and protein levels by western blot in rats. The results show that intracerebroventricular (i.c.v.) injection of OrxA increases both gene transcription and protein content of D2R but fails to modify D1R. This effect was also confirmed with OrxA infusion in NAc/Shell. Our results demonstrate for the first time that OrxA induces up-regulation of gene and protein of D2R in NAc. These findings support the hypothesis that OrxA modulates the DAergic transmission and this may serve to understand how orexin signaling enhances DA responses at baseline conditions and in response to psychostimulants.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Orexinas/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Animais , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Injeções Intraventriculares , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Orexinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Técnicas Estereotáxicas
14.
Brain Sci ; 10(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023226

RESUMO

Chronic pain (pain lasting for >3 months) decreases patient quality of life and even occupational abilities. It can be controlled by treatment, but often persists even after management. To properly control pain, its underlying mechanisms must be determined. This review outlines the role of the mesolimbic dopaminergic system in chronic pain. The mesolimbic system, a neural circuit, delivers dopamine from the ventral tegmental area to neural structures such as the nucleus accumbens, prefrontal cortex, anterior cingulate cortex, and amygdala. It controls executive, affective, and motivational functions. Chronic pain patients suffer from low dopamine production and delivery in this system. The volumes of structures constituting the mesolimbic system are known to be decreased in such patients. Studies on administration of dopaminergic drugs to control chronic pain, with a focus on increasing low dopamine levels in the mesolimbic system, show that it is effective in patients with Parkinson's disease, restless legs syndrome, fibromyalgia, dry mouth syndrome, lumbar radicular pain, and chronic back pain. However, very few studies have confirmed these effects, and dopaminergic drugs are not commonly used to treat the various diseases causing chronic pain. Thus, further studies are required to determine the effectiveness of such treatment for chronic pain.

15.
Neuroimage Clin ; 28: 102362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32798910

RESUMO

BACKGROUND: Parkinson's disease is associated with severe nigro-striatal dopamine depletion, leading to motor dysfunction and altered reward processing. We previously showed that drug-naïve patients with Parkinson's disease had a consistent attenuation of reward signalling in the mesolimbic and mesocortical system. Here, we address the neurobiological effects of dopaminergic therapy on reward sensitivity in the mesolimbic circuitry, and how this may contribute to neuropsychiatric symptoms. OBJECTIVES: We tested the hypothesis that (1) dopaminergic treatment would restore the attenuated, mesolimbic and mesocortical responses to reward; and (2) restoration of reward responsivity by dopaminergic treatment would predict motor performance and the emergence of impulse control symptoms. METHODS: In 11 drug-naïve Parkinson patients, we prospectively assessed treatment-induced changes in reward processing before, and eight weeks after initiation of monotherapy with dopamine agonists. They were compared to 10 non-medicated healthy controls who were also measured longitudinally. We used whole-brain functional magnetic resonance imaging at 3 Tesla to assess the reward responsivity of the brain to monetary gains and losses, while participants performed a simple consequential gambling task. RESULTS: In patients, dopaminergic treatment improved clinical motor symptoms without significantly changing task performance. Dopamine agonist therapy induced a stronger reward responsivity in the right hippocampus with higher doses being less effective. None of the patients developed impulse control disorders in the follow-up period of four years. CONCLUSIONS: Short-term treatment with first-ever dopaminergic medication partially restores deficient reward-related processing in the hippocampus in de novo Parkinson's disease.


Assuntos
Agonistas de Dopamina , Jogo de Azar , Doença de Parkinson , Agonistas de Dopamina/uso terapêutico , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Recompensa
16.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484312

RESUMO

Opioid use disorder is classified as a chronic recurrent disease of the central nervous system (CNS) which leads to personality disorders, co-morbidities and premature death. It develops as a result of long-term administration of various abused substances, along with morphine. The pharmacological action of morphine is associated with its stimulation of opioid receptors. Opioid receptors are a group of G protein-coupled receptors and activation of these receptors by ligands induces significant molecular changes inside the cell, such as an inhibition of adenylate cyclase activity, activation of potassium channels and reductions of calcium conductance. Recent data indicate that other signalling pathways also may be involved in morphine activity. Among these are phospholipase C, mitogen-activated kinases (MAP kinases) or ß-arrestin. The present review focuses on major mechanisms which currently are considered as essential in morphine activity and dependence and may be important for further studies.


Assuntos
Adenilil Ciclases/metabolismo , Dependência de Morfina/metabolismo , Adenilil Ciclases/genética , Animais , Humanos , Dependência de Morfina/genética , Receptores Opioides/genética , Receptores Opioides/metabolismo , beta-Arrestinas/metabolismo
17.
Front Behav Neurosci ; 13: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024272

RESUMO

Reward signals encoded in the mesolimbic dopaminergic system guide approach/seeking behaviors to all varieties of life-supporting stimuli (rewards). Differences in dopamine (DA) levels have been found between dominant and submissive animals. However, it is still unclear whether these differences arise as a consequence of the rewarding nature of the acquisition of a dominant rank, or whether they preexist and favor dominance by promoting reward-seeking behavior. Given that acquisition of a social rank determines animals' priority access to resources, we hypothesized that differences in reward-seeking behavior might affect hierarchy establishment and that modulation of the dopaminergic system could affect the outcome of a social competition. We characterized reward-seeking behaviors based on rats' latency to get a palatable-reward when given temporary access to it. Subsequently, rats exhibiting short (SL) and long (LL) latency to get the rewards cohabitated for more than 2 weeks, in order to establish a stable hierarchy. We found that SL animals exhibited dominant behavior consistently in social competition tests [for palatable-rewards and two water competition tests (WCTs)] after hierarchy was established, indicating that individual latency to rewards predicted dominance. Moreover, because SL animals showed higher mesolimbic levels of DA than LL rats, we tested whether stimulation of mesolimbic DA neurons could affect the outcome of a social competition. Indeed, a combination of optical stimulation of mesolimbic DA neurons during individual training and during a social competition test for palatable rewards resulted in improved performance on this test.

18.
J Neuroendocrinol ; 31(9): e12713, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30912179

RESUMO

The ventral tegmental area (VTA), together with the preoptic area, is part of a neural circuit necessary for the expression of maternal behaviour (MB); destruction of either area disrupts MB in postpartum rats. Central to the proposal of VTA activation are dopaminergic cells, for which the cell bodies lie in the VTA and project to forebrain structures. This mesolimbic system is a motivational circuit involved in rewarding behaviours such as sex and MB. Despite their recognised importance, surprisingly, unlike the preoptic area, there are no anatomical descriptions of the pattern of VTA activation or of the dopaminergic cell activation, specifically in relation to MB in the rat. In the present study, we explore the possible activation (as indicated by Fos protein via immunohistochemistry) of the anterior and medial portions of the VTA and in the dopaminergic cells in these regions, as well as in the medial preoptic area, in lactating rats, at postpartum day 7 (after a 12-hour mother/pups separation), and in dioestrous females. After 12 hours, mothers were perfused at that moment or after a 90 minutes of interaction, or not, with their pups. We found a strong significant Fos induction in both the preoptic area and in the anterior portion of VTA in dams that interacted with their pups. The number of dopaminergic cells that coexpressed Fos did not differ across groups. Additionally, we determined Fos and GABA colocalisation in the anterior part of the VTA and found dense GABAergic processes, possibly varicosities, in the area of increased Fos expression. The results of the present study support a proposed GABAergic pathway from medial preoptic area to VTA cells, critical for the expression of MB. Future experiments are warranted to explore the neurochemical identity of the Fos and no-Fos expressing cells that are recipients of GABAergic processes in the VTA, aiming to better understand the neural circuitry of the VTA in relation to MB.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Comportamento Materno/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Feminino , Neurônios GABAérgicos/fisiologia , Lactação , Proteínas Oncogênicas v-fos/metabolismo , Área Pré-Óptica/fisiologia , Ratos Wistar , Ácido gama-Aminobutírico/fisiologia
19.
Neuropharmacology ; 159: 107498, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30660627

RESUMO

Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implicates the mesolimbic system, and associated neural circuits, on social hierarchies. In particular, we discuss the neurochemical and pharmacological studies that have highlighted the contributions of the mesolimbic system and associated circuits including dopamine signaling through the D1 or D2 receptors, GABAergic neurotransmission, the androgen receptor system, and mitochondria and bioenergetics. Given that low social status has been linked to the emergence of anxiety- and depressive-like disorders, a greater understanding of the neurochemistry underlying social dominance could be of tremendous benefit for the development of pharmacological treatments to dysfunctions in social behaviors. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.


Assuntos
Dopaminérgicos/farmacologia , Hierarquia Social , Sistema Límbico/fisiologia , Rede Nervosa/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Humanos , Sistema Límbico/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Neurofarmacologia , Área Tegmentar Ventral/efeitos dos fármacos
20.
Psychopharmacology (Berl) ; 236(4): 1303-1312, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536080

RESUMO

RATIONALE: The influence of the main dopaminergic brain regions controlling copulation, the medial preoptic area (mPOA) and the nucleus accumbens (NAcc), on male rat sexual behavior expression has not been fully established. OBJECTIVE: This work analyzes the sexual effects of dopamine (DA) receptor activation in the mPOA or the NAcc of sexually active male rats, with an intact (sexually experienced) or a reduced (sexually exhausted) sexual motivation. METHODS: The non-specific DA receptor agonist apomorphine and the D2-like receptor agonist quinpirole were infused into the mPOA or the NAcc of sexually experienced or sexually exhausted male rats and their sexual behavior recorded. RESULTS: DA receptor activation neither in the mPOA nor in the NAcc modified the copulatory behavior of sexually experienced male rats. DA receptor stimulation in the NAcc, but not in the mPOA, reversed the characteristic sexual inhibition of sexually satiated rats, and D2-like receptors were found to participate in this effect. CONCLUSION: The optimal sexual performance of sexually experienced male rats cannot be further improved by DA receptor activation at either brain region. In sexually satiated rats, which are sexually inhibited and have a diminished sexual motivation, NAcc DA receptor stimulation appears to play a key role in their capacity to respond to a motivational significant stimulus, the receptive female, with the participation of D2-like receptors. Activation of DA receptors with the same drug, at the same dose and in the same brain region, produces different effects on copulatory behavior that depend on the animal's sexual motivational state.


Assuntos
Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Motivação/fisiologia , Núcleo Accumbens/metabolismo , Saciação/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Apomorfina/farmacologia , Copulação/efeitos dos fármacos , Copulação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Quimpirol/farmacologia , Ratos , Ratos Wistar , Receptores Dopaminérgicos/metabolismo , Saciação/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA