RESUMO
Rising global metal demand has led to extensive mining, leaving post-mining landscapes with degraded soil and metal contamination. The exacerbated heavy metals concentrations deteriorate soil microbial activity and consequent microbial biomass, enzymatic activities, and organic matter are impaired. This study explores nature-based solutions, focusing on assisted natural remediation and organo-mineral amendments: marble waste (Mw), clay (Cy), and compost (Cp). Lupinus angustifolius L., a key bioremediator, is highlighted for its role in mine rehabilitation, adaptation to extreme edaphic conditions, and contribution to enhanced nutritional status. The specific aim of this study is to evaluate the synergetic impact of the use of L. angustifolius with four soil combined treatments (Com): Com1: Cy2.5-Cp2.5-Mw10; Com2: Cy2.5-Cp5-Mw5; Com3: Cy7.5-Cp2.5-Mw7.5; and Com4: Cy10-Cp10-Mw10. As a practical approach to sustainable mining soil rehabilitation, it emphasizes soil microbial biomass and activity, soil fertility, plant growth, and heavy metal immobilization in a concise and impactful manner. These combinations were used as the soil substrate material for a four-month greenhouse experiment where plant growth parameters, heavy metal accumulation, soil properties, microbial activity, and bioavailable metal content were determined. The study underscored the positive effects of the treatments Com1, Com3, and Com4 on heavy metal mobility, microbial biomass, and carbon, nitrogen, and phosphorus-acquiring enzymes. Notably, bioavailable heavy metals were effectively reduced, with copper, zinc, and lead decreasing up to 2-fold, 2-fold, and 1.8-fold, respectively. Microbial biomass and soil enzyme activities responded positively to our amendments, indicating improved nutrient cycling. Microbial biomass carbon increased up to 4-fold, and similarly, ß-glucosidase, N-acetyl-ß-glucosaminidases, L-Arginase, and acid phosphatase (Pho) increased up to 1.9-fold, 47-fold, 12.85-fold, and 2-fold, respectively. Furthermore, soil carbon and nitrogen contents increased up to 11.15-fold and 9.41-fold, respectively. This study suggested a positive and impactful influence on the intricate processes of soil carbon and nitrogen cycling, indicative of increased microbial activity, and offered a nature-based solution to mitigate the environmental impact of extensive mining.
RESUMO
Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.
Assuntos
Biodegradação Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Sulfatos , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Bactérias/metabolismo , Mineração , Solo/químicaRESUMO
Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2-) and vivianite triggers an unexpected sulfidation-reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2- boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation-reoxidation dynamics in iron phosphate minerals.
Assuntos
Metais Pesados , Oxirredução , Metais Pesados/química , Sulfetos/química , Poluentes Químicos da Água/química , Fosfatos/química , Minerais/química , Ferro/química , AdsorçãoRESUMO
In this study, hydrochars were prepared at varying temperatures with distinct mixing ratio, and then the hydrochars were characterized and evaluated for heavy metals to ascertain its potential as a soil conditioner. The application of elevated temperatures resulted in a reduction in the yield of hydrochars, whereas the incorporation of coffee grounds led to an increase in the yield. The blended hydrochar displays elevated ash, fixed carbon, and diminished H/C, O/C, and (O + N)/C ratios, indicating enhanced stability in soil treatment and potential for enhanced soil fertility. The application of hydrothermal carbonization facilitated the stabilization of heavy metals within the sewage sludge, with the stabilizing effect being enhanced by the addition of coffee grounds. Following the application of SCC as a soil conditioner to the heavy metal-contaminated soil for a period of 90 days, it was observed that the heavy metals Cu, Cr, and Ni present in the contaminated soil underwent a transition from an unstable to a stable speciation. Of the treatments tested, AK15 was identified as the most effective, demonstrating a significant reduction in the risk of leaching and biotoxicity associated with Cu, Cr, and Ni in the contaminated soil.
RESUMO
Phosphorus-solubilizing microorganisms convert insoluble phosphorus in the soil into phosphorus that can be absorbed by plants. Soluble phosphate combines with heavy metals to form precipitation, reducing the content of available heavy metals, thereby reducing the absorption of heavy metals by crops, which plays an important role in the remediation of heavy metal-contaminated soil. The effects of the immobilization of Cd and Pb and the release of PO43- by the phosphorus-solubilizing bacterium Klebsiella sp. M2 were studied through solution culture experiments. In addition, the effects of strain M2 on wheat uptake of Cd and Pb and its microbiological mechanism were also explored through pot experiments. The results showed that strain M2 reduced the concentrations of Cd and Pb and increased the concentration of PO43- in the solution through cell wall adsorption and induced phosphate precipitation. Pot experiments showed that compared to those in the CK group and inactivated strain M2 group, inoculation with live strain M2 significantly increased ï¼123%-293%ï¼ the contents of Ca2-P and Ca8-P in rhizosphere soil, decreased the content of DTPA-Cd ï¼34.48%ï¼ and DTPA-Pb ï¼36.72%ï¼ in wheat rhizosphere soil, and thus hindered the accumulation of Cd and Pb in wheat grains. Moreover, high-throughput sequencing results showed that strain M2 significantly increased the diversity of wheat rhizosphere bacterial communitiesï¼ increased the relative abundance of Proteobacteria, Gemmatimonadetes, and Bacteroidota in wheat rhizosphere soilï¼ and increased the proportion of heavy metal-immobilizing and phosphorus-promoting bacteria in wheat rhizosphere soil ï¼mainly Sphingomonas, Nocardioides, Bacillus, Gemmatimonas, and Enterobacterï¼. These bacterial genera played an important role in immobilizing heavy metals and preventing wheat from absorbing heavy metals. These results provide bacterial resources and theoretical basis for the bioremediation of heavy metal-contaminated farmland.
Assuntos
Biodegradação Ambiental , Cádmio , Klebsiella , Chumbo , Metais Pesados , Fósforo , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/microbiologia , Poluentes do Solo/metabolismo , Fósforo/metabolismo , Metais Pesados/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Klebsiella/metabolismo , Rizosfera , Bactérias/metabolismo , Bactérias/classificaçãoRESUMO
Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.
Assuntos
Arsênio , Carvão Vegetal , Secas , Poluentes do Solo , Solo , Carvão Vegetal/química , Arsênio/análise , Solo/química , Poluentes do Solo/análise , Esterco/análise , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , BovinosRESUMO
Considering the high organic matter contents and pollutants in sewage sludge (SS) and food waste (FW), seeking green and effective technology for energy recovery and pollutant control is a big challenge. In this study, we proposed a integrated technology combing SS mass separation by hydrothermal pretreatment, methane production from co-digestion of hydrothermally treated sewage sludge (HSS) centrate and FW, and biochar production from co-pyrolysis of HSS cake and digestate with heavy metal immobilization for synergistic utilization of SS and FW. The results showed that the co-digestion of HSS centrate with FW reduced the NH4+-N concentration and promoted volatile fatty acids conversion, leading to a more robust anaerobic system for better methane generation. Among the co-pyrolysis of HSS cake and digestate, digestate addition improved biochar quality with heavy metals immobilization and toxicity reduction. Following the lab-scale investigation, the pilot-scale verification was successfully performed (except the co-digestion process). The mass and energy balance revealed that the produced methane could supply the whole energy consumption of the integrated system with 26.2 t biochar generation for treating 300 t SS and 120 t FW. This study presents a new strategy and technology validation for synergistic treatment of SS and FW with resource recovery and pollutants control.
Assuntos
Perda e Desperdício de Alimentos , Metano , Esgotos , Anaerobiose , Carvão Vegetal/química , Ácidos Graxos Voláteis , Metais Pesados , Esgotos/química , Eliminação de Resíduos Líquidos/métodosRESUMO
The significant production of municipal solid waste incineration fly ash (MSWI FA) underscores the importance of developing efficient solidification materials. This study employed MgO and CaO for immobilizing MSWI FA (with a 70% fly ash incorporation), and the immobilization effect was compared with that of Portland cement (PC). Experimental findings revealed that MgO exhibited the most effective stabilization for heavy metals (Cd, Cu, Pb, and Zn) compared to CaO and PC. XRD, FTIR, TG, and SEM analysis indicated that the principal hydration products in MSWI FA binders solidified with MgO, CaO, and PC were Mg(OH)2, CaCO3, and C-S-H gel, respectively. Mg(OH)2 efficiently immobilized heavy metals through chemical complexation and surface adsorption mechanisms. The MgO-treated MSWI FA demonstrated the highest residual fractions and the lowest easily leachable fractions. Moreover, the leaching characteristics of heavy metals were significantly influenced by the pH level, so MgO-treated MSWI FA with a leachate pH of 9.18 achieved the precipitation and stabilization of most heavy metals. In summary, this study provided an effective material selection for MSWI FA immobilization and presented a novel strategy for MSWI FA management.
Assuntos
Compostos de Cálcio , Cinza de Carvão , Materiais de Construção , Incineração , Óxido de Magnésio , Metais Pesados , Óxidos , Cinza de Carvão/química , Metais Pesados/análise , Metais Pesados/química , Óxido de Magnésio/química , Materiais de Construção/análise , Compostos de Cálcio/química , Óxidos/química , Incineração/métodos , Resíduos Sólidos/análise , Adsorção , Eliminação de Resíduos/métodosRESUMO
Solid-phase residues from pyrolysis of oily wastes (OS) are widely used due to their rich pore structure and strong adsorption capacity. In this study, pyrolysis residues (OS-P) were obtained from the pyrolysis treatment of four typical OS in Karamay, Xinjiang. The results indicate that the crystalline substances in OS-P mainly were SiO2, BaSO4, and graphite. The heavy metals of OS-P were higher than that of OS in the following order: Zn > Cu > Ni > Cr > Pb > Cd. The results of the improvement of Community Bureau of Reference (BCR) sequential extraction showed that the proportion of Cu, Ni and Cr in OS1-P in the residual fraction was higher than that of the other three OS. The residual fraction of Cu, Ni, and Cr in OS1-P increased from 16.0 %, 30.0 %, and 11.0 % to 66.1 %, 81.9 %, and 89.2 %, respectively. After pyrolysis treatment, the leaching concentration of heavy metals in the residue was reduced. Referring to the requirements for heavy metal control limits (GB 4284-2018), all heavy metals in OS-P showed low risk. Their potential ecological risk indices were 4.11, 3.13, 4.87 and 5.35, respectively, indicating that the potential ecological hazards of heavy metals from OS-P were slight. There was no significant effect on the histopathological changes of kidney, lung, liver, ovary and testis of mice, showing that the rational use of OS-P in production will not produce toxic effects on target animals. Based on risk assessment and safety evaluation, the application of OS-P is controllable, safe and reliable for resource utilization.
Assuntos
Metais Pesados , Pirólise , Metais Pesados/análise , Medição de Risco/métodos , Animais , Camundongos , China , Eliminação de Resíduos/métodosRESUMO
The threat of heavy metal (HM) pollution looms large over plant growth and human health, with tobacco emerging as a highly vulnerable plant due to its exceptional absorption capacity. The widespread cultivation of tobacco intensifies these concerns, posing increased risks to human health as HMs become more pervasive in tobacco-growing soils globally. The absorption of these metals not only impedes tobacco growth and quality but also amplifies health hazards through smoking. Implementing proactive strategies to minimize HM absorption in tobacco is of paramount importance. Various approaches, encompassing chemical immobilization, transgenic modification, agronomic adjustments, and microbial interventions, have proven effective in curbing HM accumulation and mitigating associated adverse effects. However, a comprehensive review elucidating these control strategies and their mechanisms remains notably absent. This paper seeks to fill this void by examining the deleterious effects of HM exposure on tobacco plants and human health through tobacco consumption. Additionally, it provides a thorough exploration of the mechanisms responsible for reducing HM content in tobacco. The review consolidates and synthesizes recent domestic and international initiatives aimed at mitigating HM content in tobacco, delivering a comprehensive overview of their current status, benefits, and limitations.
Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Nicotiana , Metais Pesados/análise , Plantas , Poluição Ambiental/análise , Solo/química , Poluentes do Solo/análiseRESUMO
Nano-scale Mn oxides can act as effective stabilizers for Tl in soil and sediments. Nevertheless, the comprehensive analysis of the capacity of MnO2 to immobilize Tl in such porous media has not been systematically explored. Therefore, this study investigates the impact of γ-MnO2, a model functional nanomaterial for remediation, on the mobility of Tl in a water-saturated quartz sand-packed column. The mechanisms involved are further elucidated based on the adsorption and aggregation kinetics of γ-MnO2. The results indicate that higher ionic strength (IS) and the presence of ion Ca(II) promote the aggregation of γ-MnO2, resulting from the reduced electrostatic repulsion between particles. Conversely, an increase in pH inhibits aggregation due to enhanced interaction energy. γ-MnO2 significantly influences Tl retention and mobility, with a substantial fraction of γ-MnO2-bound Tl transported through the column. This might be attributed to the high affinity of γ-MnO2 for Tl through ion exchange reactions and precipitation at the surface of γ-MnO2. The mobility of Tl in the sand column is influenced by the γ-MnO2 colloids, exhibiting either inhibition or promotion depending on the pH, IS, and cation type of the solution. In solutions with higher IS and Ca(II), the mobility of Tl decreases as γ-MnO2 colloids tend to aggregate, strain, and block, facilitating colloidal Tl retention in porous media. Although higher pH reduces the mobility of individual Tl, it promotes the mobility of γ-MnO2 colloids, facilitating a substantial fraction of colloidal-form Tl. Consequently, the optimal conditions for stabilizing Tl by γ-MnO2 involve either high IS and low pH or the presence of competitive cations (e.g., Ca(II)). These findings provide new insights into Tl immobilization using MnO2- and Mn oxide-based functional materials, offering potential applications in the remediation of Tl contamination in soil and groundwater.
Assuntos
Nanopartículas , Água , Óxidos , Areia , Tálio , Porosidade , Compostos de Manganês , Coloides , SoloRESUMO
Zinc (Zn) is one of the most common heavy metals that pollute soils and can threaten both environmental and human health. Biochar is a potential solution for remediating soil Zn contamination. This meta-analysis investigates the effect of biochar application on the remediation of Zn-contaminated soils and the factors affecting the remediation efficiency. We found that biochar application in Zn-contaminated soils reduced Zn bioavailability by up to 77.2% in urban soils, 55.1% in acidic soils, and 50.8% in coarse textured soils. Moreover, the remediation efficiency depends on the biochar production condition, with crop straw and sewage sludge feedstocks, high pyrolysis temperature (450-550 °C), low heating rate (<10 °C min-1), and short residence time (<180 min) producing high performing biochars. Biochar affects soil Zn bioavailability by changing soil pH and organic carbon, as well as through its high surface area, ash content, and O-containing surface functional groups. Our findings highlight the role of biochar as a promising and environmentally friendly material for remediating Zn contamination in acidic and/or coarse textured soils. We conclude that soil properties must be considered when selecting biochars for remediating soil Zn contamination.
Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Humanos , Zinco , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Compostos Orgânicos , Esgotos/químicaRESUMO
The naturally occurring iron storage protein, ferritin, has been recognized as an important template for preparing inorganic nanomaterials by fixation of metal ions and metal complexes into the cage. Such ferritin-based biomaterials find applications in various fields like bioimaging, drug delivery, catalysis, and biotechnology. The unique structural features with exceptional stability at high temperature up to ca. 100 °C and a wide pH range of 2-11 enable to design the ferritin cage for such interesting applications. Infiltration of metals into ferritin is one of the key steps for preparing ferritin-based inorganic bionanomaterials. Metal-immobilized ferritin cage can be directly utilized for applications or act as a precursor for synthesizing monodisperse and water-soluble nanoparticles. Considering this, herein, we have described a general protocol on how to immobilize metal into a ferritin cage and crystallize the metal composite for structure determination.
Assuntos
Apoferritinas , Baço , Cavalos , Animais , Ferritinas , Metais , FerroRESUMO
Metal-immobilizing bacteria play a critical role in metal accumulation in vegetables. However, little is known concerning the mechanisms involved in bacteria-induced reduced metal availability and uptake in vegetables. In this study, the impacts of metal-immobilizing Pseudomonas taiwanensis WRS8 on the plant biomass, Cd and Pb availability and uptake in two coriander (Coriandrum sativum L.) cultivars, and bacterial community structure were investigated in the polluted soil. Strain WRS8 increased the biomass of two coriander cultivars by 25-48% and reduced Cd and Pb contents in the edible tissues by 40-59% and available Cd and Pb contents in the rhizosphere soils by 11.1-15.2%, compared with the controls. Strain WRS8 significantly increased the pH values and relative abundances of the dominant populations of Sphingomonas, Pseudomonas, Gaiellales, Streptomyces, Frankiales, Bradyrhizobium, and Luteimonas, while strain WRS8 significantly decreased the relative abundances of the dominant populations of Gemmatimonadaceae, Nitrospira, Haliangium, Paenibacillus, Massilia, Bryobacter, and Rokubacteriales and the rare bacterial populations of Enterorhabdus, Roseburia, Luteibacter, and Planifilum in the rhizosphere soils, compared with the controls. Significantly negative correlations were observed between the available metal concentrations and the abundances of Pseudomonas, Luteimonas, Frankiales, and Planifilum. These results implied that strain WRS8 could affect the abundances of the dominant and rare bacterial populations involved in metal immobilization, resulting in increased pH values and decreased metal availability and uptake in the vegetables in the contaminated soil.
Assuntos
Actinomycetales , Coriandrum , Metais Pesados , Poluentes do Solo , Cádmio/análise , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Pseudomonas , Verduras , Bactérias , Solo/químicaRESUMO
Chemical passive treatment systems used to remediate acid mine drainage has been evaluated based mainly on the reactivity of the chemical alkaline reagents, overlooking the activity of the microorganisms that proliferate in these artificial ecosystems. In this study, the bacterial communities of a unique passive treatment system known as BDAS (Barium carbonate Dispersed Alkaline Substrate) were investigated using 16S rRNA gene metagenomic sequencing combined with hydrochemical characterization of the AMD and phenotypic characterization of biogenic precipitates. According to the hydrochemical characterization, the water quality improved as the water progressed through the system, with a drastic increase in the pH (up to alkaline conditions) and total organic carbon, as well as the removal of main contaminants such as Ca2+, SO42-, Fe3+, Al3+, and Mn2+. These environmental changes resulted in an increase in bacterial diversity (richness) after the inlet and in the shift of the bacterial communities from chemoautotrophs (e.g., Ferrovum and Acidiphilum) to chemoheterotrophs (e.g., Brevundimonas and Geobacter). Some of these taxa harbour potential to immobilize metals, aiding in the treatment of the water. One of the mechanisms involved in the immobilization of metals is microbially induced calcium carbonate precipitation, which seems to occur spontaneously in BDAS. The production of biofilm was also observed in most parts of the system, except in the inlet, helping with the removal of metals. However, in the long run, the build-up of biofilm and precipitation of metals could clog (i.e., biofouling) the pores of the matrix, reducing the treatment efficiency. Potential human pathogens (e.g. Legionella) were also detected in BDAS indicating the need for a treatment step at the end of the system to remove pathogenic microorganisms. These findings present a new perspective of the bacterial communities and their effects (both positively and negatively) in a chemical passive treatment system.
Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise , Metais , ÁcidosRESUMO
Mining activities provide a pathway for the entry and accumulation of various heavy metals in soil, which ultimately leads to severe environmental pollution. Utilization of various immobilizing agents could restore such contaminated soils. Therefore, in this study, date palm-derived biochars (BCs: produced at 300 °C, 500 °C and 700 °C) and magnetized biochars (MBCs) were employed to stabilize heavy metals (Cd, Pb, Cu and Zn) in mining polluted soil. Metal polluted soil was amended with BCs and MBCs at w/w ratio of 2% and cultivated with wheat (Triticum aestivum L.) in a greenhouse. After harvesting, dry and fresh biomass of plants were recorded. The soil and plant samples were collected, and the concentrations of heavy metals were measured after extracting with water, DTPA (diethylenetriaminepentaacetic acid), EDTA (ethylenediaminetetraacetic acid), and acetic acid. BCs and MBCs resulted in reduced metal availability and uptake, with higher fresh and dry biomass (>36%). MBCs showed maximum decrease (>70%) in uptake and shoot concentration of metals, as these reductions for Cd and Pb reached below the detection limits. Among all single-step extractions, the DTPA-extractable metals showed a significant positive correlation with shoot concentrations of tested metals. Thus, the synthesized BCs and MBCs could effectively be used for stabilizing heavy metals and improve plant productivity in multi-contaminated soils. However, future studies should focus on long term field trials to restore contaminated mining soils using modified biochars.
This study has demonstrated the performance of magnetized biochars for in-situ stabilization of toxic metals (Cd, Pb, Cu and Zn) in mining polluted soil by single extraction method. All the produced BCs and magnetized BCs showed great potential in immobilizing the metals and reducing their availability in soil, consequently decreasing their shoot concentration and plant uptake. Significant negative correlations were observed between soil pH and metal extraction from applied extraction methods such as water soluble, DTPA, and EDTA extractions. We found DTPA as a suitable extractant for investigating metal uptake in plant in multi-contaminated soils. Treatments with MBCs showed maximum decrease in plant uptake and concentration of studied metals. Thus, application of MBCs could efficiently immobilize soil heavy metals.
Assuntos
Metais Pesados , Phoeniceae , Poluentes do Solo , Cádmio , Phoeniceae/metabolismo , Chumbo , Poluentes do Solo/análise , Biodegradação Ambiental , Metais Pesados/análise , Carvão Vegetal , Solo , Ácido PentéticoRESUMO
Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.
Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Solo/químicaRESUMO
Fly ash (FA) is a solid, fine powder that constitutes a by-product obtained when coal, biomass, municipal solid waste or a mixture of these are combusted. This review article focuses on the mechanochemistry of coal fly ash (CFA), as well as highlights the issue of fly ash from municipal solid waste (MSW). In general, FA is regarded as a waste of public concern (since it contains hazardous components), which is primarily consumed in the construction industry, as well as in chemical synthesis and environmental engineering. However, the actual amount of FA recycled is still less than the amount produced, with the reuse rate of only up to 30 %. Due to its relatively low reactivity and heterogeneity, FA is commonly landfilled in huge quantities. Nevertheless, the physical and chemical properties of FA can be tailored, for example, by mechanical forces, ultimately leading to a higher value-added product. Currently, mechanochemistry (MC) is drawing attention in chemical synthesis, pollution remediation and waste management, especially as a possible solution for various drawbacks of conventional syntheses and processes. Mechanochemical processing of FA can be considered eco-friendly, inexpensive and efficient, in particular for processing tons of readily available fly ash already stored in ponds or landfills. With the aim of highlighting the hidden potential and facilitating the favorable use of FA, this article deals with FA as an environmentally challenging material, FA reactivity and recycling through mechanochemical processing, mechanochemical stabilization of heavy metals in FA, as well as up-to-date challenges for life cycle assessment (LCA) in evaluating FA-derived materials. Furthermore, all these full-potential aspects of FA mechanochemistry have not been addressed before, which is a valuable contribution to the existing literature.
Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/análise , Resíduos Sólidos/análise , Incineração , Metais Pesados/análise , Carvão Mineral , CarbonoRESUMO
The excess sludge produced by sewage treatment plants can be recycled into energy through pyrolysis, and the byproduct biochar can be used for soil remediation. However, the heavy metals in sludge are retained in biochar after pyrolysis and may cause secondary pollution during its soil application. Herein, a fast copyrolysis method of activated sludge (AS) and apple branches (AT) was proposed to immobilize heavy metals while improving bio-oil yield. The results showed that the heavy metal release from the copyrolyzed biochar was markedly reduced compared with that from the biochar produced through the pyrolysis of AS alone (78% for Cr and 28% for Pb). The kinetic behavior of ion release from different biochars could be described by a first-order kinetic model. The excellent fixation of heavy metals was attributed to complexation by abundant oxygen-containing surface functional groups (-O-, =O, and -CHO) that were mainly donated by AT. Furthermore, high-temperature pyrolysis was conducive to the fixation of metals, and the release of Pb2+ and Cr3+ from the biochar pyrolyzed at 600 °C was approximately 2/3 and 1/10 of that from the biochar pyrolyzed at 400 °C, respectively. A growth experiment on Staphylococcus aureus and Escherichia coli revealed that the toxicity of the copyrolyzed biochar was greatly reduced. This work can provide a method for heavy metal fixation and simultaneous resource recovery from organic wastes.
Assuntos
Malus , Metais Pesados , Esgotos , Chumbo , Carvão Vegetal , Metais Pesados/análise , SoloRESUMO
The wastes generated from the mining and processing of granite and marble stone are generally regarded as useless. However, these waste materials were used as the soil amendments for the first time. The functional groups, crystalline structure and micro-morphology of granite and marble wastes amendments (GMWA) were different from the original wastes demonstrated by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR) and Scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analyses. With the addition of the amendments, the cation exchange capacity, electrical conductivity and nutrient availability of the soil increased, and the extractable heavy metals of the soil reduced significantly. Under the condition of the addition of 3% amendments, 7.0%, 99.9%, 99.7% and 70.5% of Cu, Pb, Zn and Cd in exchangeable fractions in soil were transformed to the more stable Fe-Mn oxides- or carbonates-bounded fractions. Tessier method and correlation analysis showed that the reduction of extractable metals in the acidic paddy soil can be attributed to the adsorption of available SiO2, the co-precipitation induced by the elevated pH value, the complexation induced by Fe-Mn oxides and the cation exchange induced by mineral nutrients. This study provides a new strategy for resource recovery of waste stones and remediation of heavy metal-contaminated soil.