Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 200, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782792

RESUMO

Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology. It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties. Herein, a boron-silica-tantalum ternary hybrid phenolic aerogel (BSiTa-PA) with exceptional thermal stability, extensive mechanical strength, low thermal conductivity (49.6 mW m-1 K-1), and heightened ablative resistance is prepared by an expeditious method. After extremely thermal erosion, the obtained carbon aerogel demonstrates noteworthy electromagnetic interference (EMI) shielding performance with an efficiency of 31.6 dB, accompanied by notable loading property with specific modulus of 272.8 kN·m kg-1. This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.

2.
Biomaterials ; 307: 122512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430646

RESUMO

Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.


Assuntos
DNA Mitocondrial , Neoplasias , Estresse Proteotóxico , Mitocôndrias , Nucleotidiltransferases , Imunoterapia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias/terapia
3.
Biosensors (Basel) ; 13(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37622862

RESUMO

Nanomedicine has provided cutting-edge technologies and innovative methods for modern biomedical research, offering unprecedented opportunities to tackle crucial biomedical issues. Nanomaterials with unique structures and properties can integrate multiple functions to achieve more precise diagnosis and treatment, making up for the shortcomings of traditional treatment methods. Among them, metal-polyphenol coordination polymers (MPCPs), composed of metal ions and phenolic ligands, are considered as ideal nanoplatforms for disease diagnosis and treatment. Recently, MPCPs have been extensively investigated in the field of biomedicine due to their facile synthesis, adjustable structures, and excellent biocompatibility, as well as pH-responsiveness. In this review, the classification of various MPCPs and their fabrication strategies are firstly summarized. Then, their significant achievements in the biomedical field such as biosensing, drug delivery, bioimaging, tumor therapy, and antibacterial applications are highlighted. Finally, the main limitations and outlooks regarding MPCPs are discussed.


Assuntos
Fenóis , Polifenóis , Antibacterianos/uso terapêutico , Metais , Polímeros
4.
Adv Mater ; 35(12): e2209685, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36734159

RESUMO

Metal-phenolic network (MPN) foams are prepared using colloidal suspensions of tannin-containing cellulose nanofibers (CNFs) that are ice-templated and thawed in ethanolic media in the presence of metal nitrates. The MPN facilitates the formation of solid foams by air drying, given the strength and self-supporting nature of the obtained tannin-cellulose nanohybrid structures. The porous characteristics and (dry and wet) compression strength of the foams are rationalized by the development of secondary, cohesive metal-phenolic layers combined with a hydrogen bonding network involving the CNF. The shrinkage of the MPN foams is as low as 6% for samples prepared with 2.5-10% tannic acid (or condensed tannin at 2.5%) with respect to CNF content. The strength of the MPN foams reaches a maximum at 10% tannic acid (using Fe(III) ions), equivalent to a compressive strength 70% higher than that produced with tannin-free CNF foams. Overall, a straightforward framework is introduced to synthesize MPN foams whose physical and mechanical properties are tailored by the presence of tannins as well as the metal ion species that enable the metal-phenolic networking. Depending on the metal ion, the foams are amenable to modification according to the desired application.

5.
Theranostics ; 12(14): 6258-6272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168635

RESUMO

Rationale: Effective photothermal therapy (PTT) remains a great challenge due to the difficulties of delivering photothermal agents with both deep penetration and prolonged retention at tumor lesion spatiotemporally. Methods: Here, we report an intratumoral self-assembled nanostructured aggregate named FerH, composed of a natural polyphenol and a commercial iron supplement. FerH assemblies possess size-increasing dynamic kinetics as a pseudo-stepwise polymerization from discrete nanocomplexes to microscale aggregates. Results: The nanocomplex can penetrate deeply into solid tumors, followed by prolonged retention (> 6 days) due to the in vivo growth into nanoaggregates in the tumor microenvironment. FerH performs a targeting ablation of tumors with a high photothermal conversion efficiency (60.2%). Importantly, an enhanced immunotherapeutic effect on the distant tumor can be triggered when co-administrated with checkpoint-blockade PD-L1 antibody. Conclusions: Such a therapeutic approach by intratumoral synthesis of metal-phenolic nanoaggregates can be instructive to address the challenges associated with malignant tumors.


Assuntos
Antígeno B7-H1 , Neoplasias , Linhagem Celular Tumoral , Humanos , Fatores Imunológicos , Imunoterapia , Ferro , Neoplasias/terapia , Fototerapia , Polifenóis , Microambiente Tumoral
6.
Adv Sci (Weinh) ; 8(4): 2003338, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643804

RESUMO

Radiotherapy (RT) based on DNA damage and reactive oxygen species (ROS) generation has been clinically validated in various types of cancer. However, high dose-dependent induced toxicity to tissues, non-selectivity, and radioresistance greatly limit the application of RT. Herein, an oxygen-enriched X-ray nanoprocessor Hb@Hf-Ce6 nanoparticle is developed for improving the therapeutic effect of RT-radiodynamic therapy (RDT), enhancing modulation of hypoxia tumor microenvironment (TME) and promoting antitumor immune response in combination with programmed cell death protein 1 (PD-1) immune checkpoint blockade. All functional molecules are integrated into the nanoparticle based on metal-phenolic coordination, wherein one high-Z radiosensitizer (hafnium, Hf) coordinated with chlorin e6 (Ce6) modified polyphenols and a promising oxygen carrier (hemoglobin, Hb) is encapsulated for modulation of oxygen balance in the hypoxia TME. Specifically, under single X-ray irradiation, radioluminescence excited by Hf can activate photosensitizer Ce6 for ROS generation by RDT. Therefore, this combinatory strategy induces comprehensive antitumor immune response for cancer eradication and metastasis inhibition. This work presents a multifunctional metal-phenolic nanoplatform for efficient X-ray mediated RT-RDT in combination with immunotherapy and may provide a new therapeutic option for cancer treatment.

7.
Biomaterials ; 269: 120638, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421711

RESUMO

A critical challenge remains in PD-1 checkpoint blockade immunotherapy is few tumor specific T cells infiltration in hypoxic tumor microenvironment (TME). Improving immunogenic cell death (ICD) associated immunogenicity can make tumor sensitive to PD-1 checkpoint blockade immunotherapy. Herein, a phenolic ICD inducer was engineered by self-assembly of the superior ICD inducer (doxorubicin, DOX), phenolic manganese dioxide nanoreactor, ferric iron and PEG-polyphenols (MDP NPs) via metal phenolic coordination. These oxygen self-supporting MDP NPs strengthen DOX based ROS-dependent cell death and their metal mediated chemodynamic effect accelerate ICD induction. Together with concomitant ICD triggered by DOX, MDP NPs successively lead to tumor-associated antigen boosting, DCs maturation and ultimately enhance tumor-specific T cells infiltration. Furthermore, MDP NPs efficiently modulated hypoxic TME for effective macrophages recruitment. This promising ICD-augment strategy efficiently improve tumor response to PD-1 checkpoint blockade immunotherapy, resulting in a significant antitumor immune response in primary tumor and a strong abscopal effect to distant tumor. Our simple and versatile phenolic inducer expands the application of chemodrugs based ICD enhancing PD-1 checkpoint blockade immunotherapy.


Assuntos
Morte Celular Imunogênica , Imunoterapia , Neoplasias , Doxorrubicina , Humanos , Inibidores de Checkpoint Imunológico , Nanopartículas , Neoplasias/tratamento farmacológico , Polifenóis , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
8.
J Chromatogr A ; 1636: 461776, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33340749

RESUMO

To address the undesirably low porosity of phenolic resin, a new material termed magnetic mesoporous metal-phenolic coordination spheres (Fe3O4@Co-TA) was synthesized by chelating tannic acid (TA) with metal ions. Fe3O4@Co-TA was characterized by transmission electron microscopy, scanning electron microscopy, hysteresis loop (B-H) analysis, Fourier-transform infrared spectroscopy, and N2 adsorption-desorption. The results indicated that the new material comprises mesopores (2 nm and 3 nm) and exhibits a good magnetic response (44 emu/g). Combined with high-performance liquid chromatography (HPLC), a novel method for the detection of crystal violet (CV) and leucocrystal violet (LCV) by magnetic solid-phase extraction was established. Under the optimal extraction conditions, the linear ranges of CV and LCV detection were 0.2‒60 µg/L and 0.04‒40 µg/L, the detection limits were 0.04 µg/L and 0.008 µg/L, and the enrichment factors were 435 and 460, respectively. Fe3O4@Co-TA was reused ten times without significant reduction of the extraction ability. This method was successfully used for the detection of CV and LCV in fish samples, providing an effective technique for food safety monitoring and quality control.


Assuntos
Complexos de Coordenação/química , Peixes/metabolismo , Violeta Genciana/química , Extração em Fase Sólida/métodos , Adsorção , Animais , Cromatografia Líquida de Alta Pressão , Óxido Ferroso-Férrico/química , Violeta Genciana/isolamento & purificação , Limite de Detecção , Magnetismo , Porosidade , Reciclagem , Taninos/química
9.
Small ; 16(33): e2003104, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583953

RESUMO

Continuous efforts have been made to achieve nanostructured carbon materials with highly ordered graphitic structures using facile synthetic methods. 3D graphite nanoballs (GNBs) are synthesized by the low-temperature pyrolysis of a non-graphitizable precursor, tannic acid (TA). Abundant phenol groups on TA bind to Ni2+ to form metal-phenolic coordination, which renders each Ni cation to be atomically distributed by the TA ligands. Even at low temperatures (1000 °C), highly ordered graphitic structure is promoted by the distributed Ni nanoparticles that act as a graphitization catalyzer. The crystallinity of the GNB is fully corroborated by the intense 2D peak observed in Raman spectroscopy. In particular, the graphitic layers have orientations pointing toward multidirections, which are beneficial for the rapid transport of Li-ions into graphite grains. The resulting materials exhibit outstanding electrochemical performance (120 mAh g-1 at 5 C and 282 mAh g-1 at 0.5 C after 500 cycles) when evaluated as a fast-chargeable negative electrode for lithium ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA